分析 根据题意可知点P的轨迹为三角形EFG,其中G、F为中点,根据中位线定理求出EF、GE、GF,从而求出轨迹的周长.
解答 解:由题意知,点P的轨迹为如图所示的三角形EFG,其中G、F为中点,![]()
此时AC⊥EF,AC⊥GE,则AC⊥平面EFG,则PE⊥AC.
∵ABCD是边长为2的正方形,∴$BD=2\sqrt{2}$,
∴EF=$\frac{1}{2}$BD=$\sqrt{2}$,
∵SO=2,OB=$\sqrt{2}$,∴$SB=\sqrt{{2}^{2}+(\sqrt{2})^{2}}=\sqrt{6}$,
∴GE=GF=$\frac{1}{2}$SB=$\frac{\sqrt{6}}{2}$,
∴轨迹的周长为$\sqrt{2}+\sqrt{6}$.
故答案为:$\sqrt{2}+\sqrt{6}$.
点评 本题主要考查了轨迹问题,以及点到面的距离等有关知识,同时考查了空间想象能力,计算推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 25 | B. | 125 | C. | 120 | D. | 24 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{7}}{2}$ | B. | $\frac{\sqrt{13}}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{\sqrt{21}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | [-3,3] | C. | [-$\sqrt{3}$,3] | D. | [-3,$\sqrt{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2015}$ | B. | $\frac{1}{2016}$ | C. | $\frac{1}{2017}$ | D. | $\frac{1}{2018}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com