精英家教网 > 高中数学 > 题目详情
6.椭圆的四个顶点A,B,C,D构成四边形为菱形,若菱形ABCD的内切圆恰好过焦点,则椭圆离心率为(  )
A.$\frac{3\sqrt{5}}{2}$B.$\frac{3+\sqrt{5}}{8}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{5}+1}{4}$

分析 设椭圆C的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),直线AB的方程为:$\frac{x}{a}+\frac{y}{b}$=1,根据菱形ABCD的内切圆恰好过焦点,可得原点O到直线AB的距离=$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$=c,又b2=a2-c2,$\frac{c}{a}$=e,联立化简即可得出.

解答 解:设椭圆C的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),
直线AB的方程为:$\frac{x}{a}+\frac{y}{b}$=1,即bx+ay-ab=0,
∵菱形ABCD的内切圆恰好过焦点,
∴原点O到直线AB的距离=$\frac{ab}{\sqrt{{a}^{2}+{b}^{2}}}$=c,
化为a2b2=c2(a2+b2),又b2=a2-c2,$\frac{c}{a}$=e,
化为:e4-3e2+1=0,0<e<1.
解得e2=$\frac{3-\sqrt{5}}{2}$,
e=$\frac{\sqrt{5}-1}{2}$.
故选:C.

点评 本题考查了椭圆与圆的标准方程及其性质、菱形的性质、点到直线距离公式、内切圆的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若直线y=a与正弦曲线y=sinx,x∈[0,2π]的图象只有一个交点,则a=±1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若f(sin2x)=5sinx-5cosx-6(0<x<π),则f(-$\frac{24}{25}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意正整数n与k(k≤n),f(n,k)表示不超过[$\frac{n}{k}$],且与n为互质的正整数的个数,则f(100,3)=(  )
A.11B.13C.14D.19

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.半径为100mm的圆上,有一段弧长为300mm,此弧所对的圆心角的弧度数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)=|x+1|+|x+2|+…+|x+2016|+|x-1|+|x-2|+…+|x-2016|(x∈R),且f(a2-3a+2)=f(a-1),则满足条件的所有整数a的和是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某机构邀请5位市民体验“刷卡支付”、“微信支付”、“支付宝支付”,每人限使用一种支付方式,每种支付方式都要有人选择,则不同的支付方式种数有(  )
A.540B.240C.180D.150

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图如图所示,其中正视图是腰长为2cm的等腰三角形,俯视图是半径为1cm的半圆,则该几何体的表面积是$\frac{3π}{2}$+$\sqrt{3}$cm2,体积是$\frac{\sqrt{3}}{6}$πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知有条光线从点A(-2,1)出发射向x轴B,经过x轴反射后射向y轴上的C点,再经过y轴反射后到达点D(-2,7).
(1)求直线BC的方程.  
(2)求光线从A点到达D点所经过的路程.

查看答案和解析>>

同步练习册答案