| A. | $\sqrt{2}$-1 | B. | $\sqrt{3}$-1 | C. | $\frac{{\sqrt{2}-1}}{2}$ | D. | $\frac{{\sqrt{3}-1}}{3}$ |
分析 由△ABF1为等边三角形,及椭圆的对称性可得:∠AF1F2=30°,又∠F1AF2=90°,可得AF2,AF1,利用椭圆的定义可得:c+$\sqrt{3}c$=2a,即可得出.
解答 解:由△ABF1为等边三角形,及椭圆的对称性可得:∠AF1F2=30°,![]()
又∠F1AF2=90°,
∴AF2=c,AF1=$\sqrt{3}$c,
∴c+$\sqrt{3}c$=2a,可得$\frac{c}{a}$=$\frac{2}{\sqrt{3}+1}$=$\sqrt{3}$-1.
故选:B.
点评 本题考查了椭圆与圆的标准方程及其性质、等边三角形的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com