精英家教网 > 高中数学 > 题目详情
12.已知a<0,曲线f(x)=2ax2+bx+c与曲线g(x)=x2+alnx在公共点(1,f(1))处的切线相同.
(Ⅰ)试求c-a的值;
(Ⅱ)若f(x)≤g(x)+a+1恒成立,求实数a的取值范围.

分析 (Ⅰ)分别求出f(x),g(x)的导数,得到关于a,b,c的方程组,求出c-a的值即可;
(Ⅱ)根据(2a-1)x2+(2-3a)x-alnx-2≤0对x∈(0,+∞)恒成立,令h(x)=(2a-1)x2+(2-3a)x-alnx-2,(a<0),根据函数的单调性求出函数的最大值,从而求出a的范围即可.

解答 解:(Ⅰ)∵f(x)=2ax2+bx+c,f(1)=2a+b+c,
∴f′(x)=4ax+b,f′(1)=4a+b,
又g(x)=x2+alnx,g(1)=1,
∴g′(x)=2x+$\frac{a}{x}$,g′(1)=2+a,
∴$\left\{\begin{array}{l}{2a+b+c=1}\\{4a+b=2+a}\end{array}\right.$,得$\left\{\begin{array}{l}{b=2-3a}\\{2a+2-3a+c=1}\end{array}\right.$,
故c-a=-1;
(Ⅱ)∵f(x)≤g(x)+a+1恒成立,
∴(2a-1)x2+(2-3a)x-alnx-2≤0对x∈(0,+∞)恒成立,
令h(x)=(2a-1)x2+(2-3a)x-alnx-2,(a<0),
则h′(x)=$\frac{2(2a-1{)x}^{2}+(2-3a)x+a}{x}$,
令h′(x)=0,解得:x=1或x=-$\frac{a}{2(2a-1)}$<0,(舍),
故h(x)在(0,1)递增,在(1,+∞)递减,
则h(x)max=h(1)=-a-1≤0,解得:a≥-1,
故a∈[-1,0).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合$A=\left\{{x∈Z\left|{\frac{x+1}{x-3}≤0}\right.}\right\}$,B={y|y=x2+1,x∈A},则集合B的含有元素1的子集个数为(  )
A.5B.8C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知U={x∈N|x<6},P={2,4},Q={1,3,4,6},则(∁UP)∩Q=(  )
A.{3,4}B.{3,6}C.{1,3}D.{1,4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{b}满足$\frac{1}{{a}_{n}}$=$\frac{{b}_{1}}{2+1}$-$\frac{{b}_{2}}{{2}^{2}+1}$+$\frac{{b}_{3}}{{2}^{3}+1}$-…+(-1)n+1$\frac{{b}_{n}}{{2}^{n}+1}$,求数列{bn}的通项公式:,
(Ⅲ)在(Ⅱ)条件下.设cn=2n+λbn.问是否存在实数λ使得数列{cn}(n∈N*)是单调递增数列?若存在,求出λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知i是虚数单位,则i+|i|在复平面上对应的点是(  )
A.(1,0)B.(0,1)C.(1,1)D.(1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知等腰直角三角形BCD中,斜边BD长为2$\sqrt{2}$,E为边CD上的点,F为边BC上的点,且满足:$\overrightarrow{DE}=λ\overrightarrow{DC}$,$\overrightarrow{BF}=\frac{1}{3λ}\overrightarrow{BC}$,若$\overrightarrow{BE}•\overrightarrow{DF}$=$-\frac{10}{3}$,则实数λ=$\frac{1}{2}$或$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=$\frac{\sqrt{2}}{2}$(sin 17°+cos 17°),b=2cos213°-1,c=sin 37°•sin 67°+sin 53°sin 23°,则(  )
A.a<b<cB.b<c<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(文)函数y=Asin(ωx+φ)(A>0,ω>0,$0≤φ≤\frac{π}{2}$)在x∈(0,9π)内只能取到一个最大值和一个最小值,且当x=π时,y有最大值4,当x=8π时,y有最小值-4.
(1)求出此函数的解析式以及它的单调递增区间;
(2)是否存在实数m,满足不等式$Asin(ω\sqrt{m+1}+φ)>Asin(ω\sqrt{-m+4}+φ)$?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=4tanxsin(\frac{π}{2}-x)cos(x-\frac{π}{3})-\sqrt{3}$;
(1)求f(x)的定义域与最小正周期;
(2)求f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上的单调性与最值.

查看答案和解析>>

同步练习册答案