【题目】已知直线与抛物线交于两点.
(1)求证:若直线过抛物线的焦点,则;
(2)写出(1)的逆命题,判断真假,并证明你的判断.
【答案】(1)证明见解析;(2)逆命题:若,则直线过抛物线的焦点;真命题.见解析
【解析】
(1)不妨设抛物线方程为 ,则焦点坐标为,
当直线的斜率不存在时,直线方程为 代入,验证.当直线的斜率存在时,设直线方程为 代入,得,再由韦达定理验证.
(2)逆命题:直线过抛物线的焦点. 是真命题.证明:当直线的斜率不存在时,设直线方程为 代入,解得 ,再由,求解.当直线的斜率存在时,设直线方程为 代入,得 ,由韦达定理得再由,求得 与 的关系现求解.
(1)设抛物线方程为 ,则焦点坐标为,
两个交点 ,
当直线的斜率不存在时,直线方程为,
代入,得 ,
所以.
当直线的斜率存在时,设直线方程为,
代入,
得 ,
由韦达定理得 .
所以若直线过抛物线的焦点时,则.
(2)逆命题:若,则直线过抛物线的焦点. 是真命题
证明:当直线的斜率不存在时,设直线方程为 代入得
因为,
所以,
解得 ,
所以直线过抛物线的焦点.
当直线的斜率存在时,设直线方程为,
代入,
得 ,
由韦达定理得 ,
又因为,
所以 ,
所以直线的方程,
所以直线过定点
即直线过抛物线的焦点.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, 在上,且面.
(1)求证: 是的中点;
(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,设椭圆.
(1)过椭圆的左焦点,作垂直于轴的直线交椭圆于、两点,若,求实数的值;
(2)已知点,、是椭圆上的动点,,求的取值范围;
(3)若直线与椭圆交于、两点,求证:对任意大于3的实数,以线段为直径的圆恒过定点,并求该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义函数,(0,)为型函数,共中.
(1)若是型函数,求函数的值域;
(2)若是型函数,求函数极值点个数;
(3)若是型函数,在上有三点A、B、C横坐标分別为、、,其中<<,试判断直线AB的斜率与直线BC的斜率的大小并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是正方形,且,平面 平面,,点为线段的中点,点是线段上的一个动点.
(Ⅰ)求证:平面 平面;
(Ⅱ)设二面角的平面角为,试判断在线段上是否存在这样的点,使得,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了解学生的体质健康状况,对高一、高二两个年级的学生进行了体质测试.现从两个年级学生中各随机选取20人,将他们的测试数据,用茎叶图表示如图:《国家学生体质健康标准》的等级标准如表.规定:测试数据≥60,体质健康为合格.
等级 | 优秀 | 良好 | 及格 | 不及格 |
测试数据 |
(Ⅰ)从该校高二年级学生中随机选取一名学生,试估计这名学生体质健康合格的概率;
(Ⅱ)从两个年级等级为优秀的样本中各随机选取一名学生,求选取的两名学生的测试数据平均数大于95的概率;
(Ⅲ)设该校高一学生测试数据的平均数和方差分别为,高二学生测试数据的平均数和方差分别为,试估计、的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意 | 不满意 | |
男顾客 | 40 | 10 |
女顾客 | 30 | 20 |
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com