精英家教网 > 高中数学 > 题目详情

【题目】已知直线与抛物线交于两点.

1)求证:若直线过抛物线的焦点,则

2)写出(1)的逆命题,判断真假,并证明你的判断.

【答案】1)证明见解析;(2)逆命题:若,则直线过抛物线的焦点;真命题.见解析

【解析】

1)不妨设抛物线方程为 ,则焦点坐标为

当直线的斜率不存在时,直线方程为 代入,验证.当直线的斜率存在时,设直线方程为 代入,得,再由韦达定理验证.

2)逆命题:直线过抛物线的焦点. 是真命题.证明:当直线的斜率不存在时,设直线方程为 代入,解得 ,再由,求解.当直线的斜率存在时,设直线方程为 代入,得 ,由韦达定理得再由,求得 的关系现求解.

1)设抛物线方程为 ,则焦点坐标为

两个交点

当直线的斜率不存在时,直线方程为

代入,得

所以.

当直线的斜率存在时,设直线方程为

代入

由韦达定理得 .

所以若直线过抛物线的焦点时,则.

2)逆命题:若,则直线过抛物线的焦点. 是真命题

证明:当直线的斜率不存在时,设直线方程为 代入

因为

所以

解得

所以直线过抛物线的焦点.

当直线的斜率存在时,设直线方程为

代入

由韦达定理得

又因为

所以

所以直线的方程

所以直线过定点

即直线过抛物线的焦点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是矩形,面底面,且是边长为的等边三角形, 上,且.

(1)求证: 的中点;

(2)在上是否存在点,使二面角为直角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在四棱锥中,平面..点的交点,点在线段上且.

(1)证明:平面

(2)求直线与平面所成角的正弦值;

(3)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设椭圆.

(1)过椭圆的左焦点,作垂直于轴的直线交椭圆两点,若,求实数的值;

(2)已知点是椭圆上的动点,,求的取值范围;

(3)若直线与椭圆交于两点,求证:对任意大于3的实数,以线段为直径的圆恒过定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义函数(0,)为型函数,共中

(1)若型函数,求函数的值域;

(2)若型函数,求函数极值点个数;

(3)若型函数,在上有三点A、B、C横坐标分別为,其中,试判断直线AB的斜率与直线BC的斜率的大小并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面为直角梯形,底面,且的中点.

(1)证明:面

(2)求夹角的余弦值;

(3)求面与面所成二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是正方形,且,平面 平面,点为线段的中点,点是线段上的一个动点.

(Ⅰ)求证:平面 平面

(Ⅱ)设二面角的平面角为,试判断在线段上是否存在这样的点,使得,若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解学生的体质健康状况,对高一、高二两个年级的学生进行了体质测试.现从两个年级学生中各随机选取20人,将他们的测试数据,用茎叶图表示如图:《国家学生体质健康标准》的等级标准如表.规定:测试数据≥60,体质健康为合格.

等级

优秀

良好

及格

不及格

测试数据

(Ⅰ)从该校高二年级学生中随机选取一名学生,试估计这名学生体质健康合格的概率;

(Ⅱ)从两个年级等级为优秀的样本中各随机选取一名学生,求选取的两名学生的测试数据平均数大于95的概率;

(Ⅲ)设该校高一学生测试数据的平均数和方差分别为,高二学生测试数据的平均数和方差分别为,试估计的大小.(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:

满意

不满意

男顾客

40

10

女顾客

30

20

1)分别估计男、女顾客对该商场服务满意的概率;

2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?

附:

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案