精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=|x+a|+|x-2|
(1)当a=-3时,求不等式f(x)≥3的解集;
(2)若不等式f(x)<2的解集为空集,求实数a的取值范围.

分析 (1)利用绝对值不等式的解法,去掉绝对值,求解即可.(2)问题转化为f(x)=|x+a|+|x-2|≥2,利用绝对值三角不等式直接求解即可.

解答 解:(1)当a=-3时,不等式f(x)≥3
可得$\left\{\begin{array}{l}{x≤2}\\{3-x+2-x≥3}\end{array}\right.$或$\left\{\begin{array}{l}{2<x<3}\\{3-x+x-2≥3}\end{array}\right.$或$\left\{\begin{array}{l}{x≥3}\\{x-3+x-2≥3}\end{array}\right.$,
解得:x≤1或x≥4
即x∈(-∞,1]∪[4,+∞).
(2)若不等式f(x)<2的解集为空集,
则f(x)=|x+a|+|x-2|≥2,
可得|x+a|+|x-2|≥|a+2|≥2,
解得a≥0或a≤-4.

点评 本题考查绝对值不等式的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:
时间x12345
命中率y0.40.50.60.60.4
小李这5天的平均投篮命中率;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率.
附:线性回归方程$\widehaty=\widehatbx+\widehata$中系数计算公式$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)}({y_i}-\overline y)}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.调查在2~3级风的海上航行中71名乘客的晕船情况,在男人中有12人晕船,25人不晕船,在女人中有10人晕船,24人不晕船
(1)作出性别与晕船关系的列联表;
晕船不晕船总计
男人
女人
总计
(2)根据此资料,能否在犯错误的概率不超过0.1的前提下认为2~3级风的海上航行中晕船与性别有关?
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(b+c)(b+d)}$,n=a+b+c+d
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8415.024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设$f(x)=\left\{\begin{array}{l}x+1,(x≥0)\\ 4x,(x<0)\end{array}\right.$,则f(2)=(  )
A.1B.2C.8D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.【参考公式:$\hat b=\frac{{\sum_{i=1}^n{({{x_i}-\bar x})({{y_i}-\bar y})}}}{{\sum_{i=1}^n{{{({{x_i}-\bar x})}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n•{{\overline x}^2}}}}$,$\hat a=\bar y-\hat b\overline x$】
假设关于某种设备的使用年限x(年)与所支出的修理费用y万元),有如下的统计资料:
使用年限 x23456
维修费用 y2.23.85.56.57.0
由资料可知y与x具有线性相关关系.      
 (1)求回归方程$\hat y=\hat bx+\hat a$;
(2)估计使用年限为10年时维修费用是多少.(参考数据:$\sum_{i=1}^5{{x_i}^2=}{2^2}+{3^2}+{4^2}+{5^2}+{6^2}=90$,$\sum_{i=1}^5{{x_i}{y_i}=}2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.工人月工资y(元)关于劳动生产率x(千元)的回归方程为$\widehat{y}$=650+80x,下列说法中正确的个数是(  )
①劳动生产率为1000元时,工资为730元;
②劳动生产率提高1000元,则工资提高80元;
③劳动生产率提高1000元,则工资提高730元;
④当月工资为810元时,劳动生产率约为2000元.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级.在35微克/立方米~75微克/立方米之间空气质量为二级.在75微克/立方米以上空气质量为超标.某试点城市环保局从该市市区2016年全年每天的PM2.5监测数据中随机的抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).
(1)以这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按360天计算)中平均有多少天的空气质量达到一级或二级.
(2)从这15天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.中国南北朝时期的著作《孙子算经》中,对同余除法有较深的研究.设a,b,m均为正整数,若a和b
除以m所得的余数相同,则称a和b对模m同余,记为a≡b(mod m).如9和21除以6所得的余数都是3,则记为9≡21(mod 6),若a=${C}_{20}^{0}$+${C}_{20}^{1}$•3+${C}_{20}^{2}$•32+…+${C}_{20}^{20}$•320,a≡b(mod 5),则b的值可以是(  )
A.2014B.2015C.2016D.2017

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC的内角A,B,C的对边分别为a,b,c,若bcosA+acosB=c2,且a=$\sqrt{3}$,b=$\sqrt{2}$,则cosB等于(  )
A.$\frac{1}{3}$B.$\frac{3}{4}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

同步练习册答案