| A. | 18 $\sqrt{2}$ | B. | 16 | C. | 24 | D. | 18 |
分析 以C为原点,以BC为x轴,以AB为y轴,建立如图所述的平面直角坐标系,分别表示点的坐标,根据向量的坐标运算即可求出答案.
解答
解:以C为原点,以BC为x轴,以AB为y轴,建立如图所述的平面直角坐标系,
则A(0,6),B(6,0),C(0,0),M=(3,3),
∵AC=BC=6,
∴AB=6$\sqrt{2}$,
∵N为AB上一点,MN=2$\sqrt{2}$,
∴BN=3$\sqrt{2}$-2$\sqrt{2}$=$\sqrt{2}$,
∴N(5,1),
∴$\overrightarrow{CM}$•$\overrightarrow{CN}$=(3,3)•(5,1)=3×5+1×3=18,
∵N为AB上一点,MN=2$\sqrt{2}$,
∴AN1=3$\sqrt{2}$-2$\sqrt{2}$=$\sqrt{2}$,
∴N1(1,5),
∴$\overrightarrow{CM}$•$\overrightarrow{CN}$=(3,3)•(1,5)=3×1+3×5=18,
故选:D
点评 本题考查了向量的坐标运算,关键时构建平面直角坐标系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com