精英家教网 > 高中数学 > 题目详情
18.设命题p:?x>0,log2x<2x+3,则¬p为(  )
A.?x>0,log2x≥2x+3B.?x>0,log2x≥2x+3C.?x>0,log2x<2x+3D.?x<0,log2x≥2x+3

分析 根据全称命题的否定为特称命题,即可得到答案.

解答 解:根据全称命题的否定为特称命题,则命题p:?x>0,log2x<2x+3,则¬p为?x>0,log2x≥2x+3,
故选:B

点评 本题考查了命题的否定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知直线a⊥平面α,则“直线b∥平面α”是“直线a⊥直线b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,AD∥BC,AD=AB=DC=$\frac{1}{2}$BC=1,E是PC的中点,面PAC⊥面ABCD.
(Ⅰ)证明:ED∥面PAB;
(Ⅱ)若PB=PC=2,求点P到面ABCD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设i是虚数单位,复数$z=\frac{{2{i^3}}}{1-i}$,则复数z的共轭复数为(  )
A.-1+iB.-1-iC.1-iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在几何体ABCDEF中,底面ABCD为矩形,EF∥CD,AD⊥FC.点M在棱FC上,平面ADM与棱FB交于点N.
(Ⅰ)求证:AD∥MN;
(Ⅱ)求证:平面ADMN⊥平面CDEF;
(Ⅲ)若CD⊥EA,EF=ED,CD=2EF,平面ADE∩平面BCF=l,求二面角A-l-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(0,-2).则与$\overrightarrow{a}$+2$\overrightarrow{b}$垂直的向量可以是(  )
A.(3,2)B.(3,-2)C.(4,6)D.(4,-6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在几何体ABCDEF中,底面ABCD为矩形,EF∥CD,CD⊥EA,CD=2EF=2,ED=$\sqrt{3}$.M为棱FC上一点,平面ADM与棱FB交于点N.
(Ⅰ)求证:ED⊥CD;
(Ⅱ)求证:AD∥MN;
(Ⅲ)若AD⊥ED,试问平面BCF是否可能与平面ADMN垂直?若能,求出$\frac{FM}{FC}$的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设α∈(0,$\frac{π}{2}$),若sinα=$\frac{3}{5}$,则$\sqrt{2}cos(2α+\frac{π}{4})$=(  )
A.$\frac{7}{25}$B.$\frac{17}{25}$C.-$\frac{17}{25}$D.$\frac{31}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,多面体ABCDE中,AB=AC,BE∥CD,BE⊥BC,平面BCDE⊥平面ABC,M为BC的中点.
(Ⅰ)若N是线段AE的中点,求证:MN∥平面ACD.
(Ⅱ)若N是AE上的动点且BE=1,BC=2,CD=3,求证:DE⊥MN.

查看答案和解析>>

同步练习册答案