精英家教网 > 高中数学 > 题目详情
已知函数f(x)=logax,(a>0且a≠1).
(1)若g(x)=f(|x|),当a>1时,解不等式g(1)<g(lgx);
(2)若函数h(x)=|f(x-a)|-1,讨论h(x)在区间[2,4]上的最小值.
(1)g(x)=loga|x|是偶函数
当x>0时,g(x)=logax(a>1)是增函数,当x<0时,g(x)=loga(-x)(a>1)是减函数,
∵g(1)<g(lgx),∴g(1)<g(|lgx|),
∴1<|lgx|,
∴lgx<-1或lgx>1
∴0<x<0.1或x>10;
∴不等式的解集为:{x|0<x<0.1或x>10}
(2)h(x)=|f(x-a)|-1=|loga(x-a)|-1
∵x-a>0,x∈[2,4],∴0<a<4且a≠1
若x=a+1时,loga(x-a)=0
①当2<a+1≤4,则1<a≤3,∴x=a+1时,h(x)min=h(a+1)=-1.
②当a+1<2,则0<a<1,在x∈[2,4]时,h(x)为增函数,
∴x=2时,h(x)min=h(2)=-loga(2-a)-1.
③当a+1>4,则3<a<4,在x∈[2,4]时,h(x)为减函数.
∴x=4时,h(x)min=h(4)=-loga(4-a)-1.
∴h(x)min=
-loga(2-a)-1,0<a<1
-1,1<a≤3
-loga(4-a)-1,3<a<4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若(m+1)x2-(m-1)x+3(m-1)<0对任意实数x恒成立,则实数m的取值范围是(  )
A.m>1B.m<-1
C.m<-
13
11
D.m>1或m<-
13
11

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=
ax+3,(x≤1)
1
x
+1,(x>1)
,满足对任意定义域中的x1,x2(x1≠x2),[f(x1)-f(x2)](x1-x2)<0总成立,则实数a的取值范围是(  )
A.(-∞,0)B.[-1,0)C.(-1,0)D.(-1,+∞),

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=
log2|x|
x
的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2
(1)证明f(x)为奇函数.
(2)证明f(x)在R上是减函数.
(3)若f(2x+5)+f(6-7x)>4,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数f(x)为奇函数,且在(0,+∞)上是增函数,又f(2)=0,则xf(x)<0(  )
A.(-2,0)∪(0,2)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知偶函数f(x)在(-∞,0]上是增函数,且f(1)=0,则满足xf(x)<0的x的取值的范围为(  )
A.(-1,1)B.[-1,1]C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)=x5+ax3+bx-8且f(-2)=-6,那么f(2)=(  )
A.0B.-10C.-18D.-26

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)是定义在(-2,2)上的减函数,满足:f(-x)=-f(x),且f(m-1)+f(2m-1)>0,求实数m的取值范围.

查看答案和解析>>

同步练习册答案