精英家教网 > 高中数学 > 题目详情
若(m+1)x2-(m-1)x+3(m-1)<0对任意实数x恒成立,则实数m的取值范围是(  )
A.m>1B.m<-1
C.m<-
13
11
D.m>1或m<-
13
11
∵(m+1)x2-(m-1)x+3(m-1)<0对任意实数x恒成立,
①当m+1=0,即m=-1时,不等式为x<0,不符合题意;
②当m+1≠0,即m≠-1时,由(m+1)x2-(m-1)x+3(m-1)<0对任意实数x恒成立,
m+1<0
(m-1)2-12(m+1)(m-1)<0
,解得m<-
13
11

∴实数m的取值范围是m<-
13
11

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x3+x,则当x<0时,f(x)=(  )
A.f(x)=x3-xB.f(x)=-x3-xC.f(x)=-x3+xD.f(x)=x3+x

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x2,g(x)=(
1
2
x-m,若对?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2),则实数m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知奇函数f(x)和偶函数g(x)的定义域都是(-∞,0)∪(0,+∞),且当x<0时,f’(x)g(x)+f(x)g’(x)>0.若g(-2)=0,则不等式f(x)g(x)>0的解集是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
ax+b
x2+1
在点M(1,f(1))
处的切线方程为x-y-1=0.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设函数g(x)=lnx,证明:g(x)≥f(x)对x∈[1,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的奇函数f(x)满足:f(x+1)=f(x-1),且当0≤x≤1时,f(x)=-8x2+8x,则f(-
2013
2
)
=(  )
A.2B.-1C.-2D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=a-
2
2x+1

(1)若f(x)为奇函数,求实数a的值;
(2)判断并证明f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=logax,(a>0且a≠1).
(1)若g(x)=f(|x|),当a>1时,解不等式g(1)<g(lgx);
(2)若函数h(x)=|f(x-a)|-1,讨论h(x)在区间[2,4]上的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的零点个数为         .
 

查看答案和解析>>

同步练习册答案