精英家教网 > 高中数学 > 题目详情
20.已知奇函数f(x)是定义在R上的可导函数,其导函数为f′(x),当x>0时有2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)+4f(-2)<0的解集为(  )
A.(-∞,-2012)B.(-2016,-2012)C.(-∞,-2016)D.(-2016,0)

分析 构造函数F(x)=x2f(x),根据导数求出函数的单调区间,再由(x+2014)2f(x+2014)+4f(-2)<0转化为F(x+2014)<-F(-2)=F(2),解得即可.

解答 解:由2f(x)+xf′(x)>x2,(x>0);
得:2xf(x)+x2f′(x)>x3
即[x2f(x)]′>x3>0;
令F(x)=x2f(x);
则当x>0时,F'(x)>0,即F(x)在(0,+∞)上是增函数,
∵f(x)为奇函数,
∴F(x)=x2f(x)为奇函数,
∴F(x)在(-∞,0)上是增函数,
∴F(x+2014)=(x+2014)2f(x+2014),F(-2)=4f(-2);
即不等式等价为F(x+2014)+F(-2)<0;
即F(x+2014)<-F(-2)=F(2),
∴x+2014<2,∴x<-2012;
∴原不等式的解集是(-∞,-2012).
故选:A.

点评 本题考查函数的单调性与导数的关系,两个函数乘积的导数的求法,而构造函数是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图所示的几何体中,四边形ABCD为等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求证:BD⊥平面AED;
(2)若△EAD中,AE=ED,∠EAD=45°,求二面角F-BD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数y=f(x)(x∈R)的导函数为y=f′(x),且f(x)=f(-x),f′(x)<f(x).则下列三个数:a=ef(2),b=f(3),c=e2f(-1)从小到大排列为b<a<c.(e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是(  )
A.在区间(-2,1)上f(x)是增函数B.在(1,3)上f(x)是减函数
C.当x=4时,f(x)取极大值D.在(4,5)上f(x)是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,则x+y的取值范围为(  )
A.[-2,0]B.[0,2]C.[-2,2]D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=x2+alog2(x2+2)+a2-2有唯一零点,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,则an=$\frac{{3{n^2}-n}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.观察下列的规律:$\frac{1}{1}$,$\frac{1}{2}$,$\frac{2}{1}$,$\frac{1}{3}$,$\frac{2}{2}$,$\frac{3}{1}$,$\frac{1}{4}$,$\frac{2}{3}$,$\frac{3}{2}$,$\frac{4}{1}$,…则第89个是(  )
A.$\frac{1}{8}$B.$\frac{2}{13}$C.$\frac{11}{3}$D.$\frac{1}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设集合A={x||x-a|<2},B={x|$\frac{1}{4}$<2x<8}.
(1)若a=-1,求集合A;
(2)若A∩B=A,求实数a的取值范围.

查看答案和解析>>

同步练习册答案