精英家教网 > 高中数学 > 题目详情
2.在△ABC内随机取一点P,使$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,则x≤$\frac{2}{3}$在的条件下y≥$\frac{1}{3}$的概率(  )
A.$\frac{7}{9}$B.$\frac{4}{9}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 根据题意,把问题转化为求二元一次不等式组表示的平面区域问题,根据区域面积的比值求概率的应用问题,即可求出对应的概率.

解答 解:△ABC内随机取一点P,使$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$,
则0≤x+y≤1;
又x≤$\frac{2}{3}$,
则由$\left\{\begin{array}{l}{0≤x+y≤1}\\{0≤x≤\frac{2}{3}}\end{array}\right.$所围成的区域面积为
S=$\frac{1}{2}$×12-$\frac{1}{2}$×${(\frac{1}{3})}^{2}$=$\frac{4}{9}$;
由$\left\{\begin{array}{l}{0≤x+y≤1}\\{0≤x≤\frac{2}{3}}\\{y≥\frac{1}{3}}\end{array}\right.$所围成的区域面积为
S1=$\frac{1}{2}$×${(\frac{2}{3})}^{2}$=$\frac{2}{9}$,
所以,所求的概率为
P=$\frac{{S}_{1}}{S}$=$\frac{\frac{2}{9}}{\frac{4}{9}}$=$\frac{1}{2}$.
故选:C.

点评 本题主要考查几何槪型的概率计算问题,解题的关键是把问题转化为求二元一次不等式组表示的平面区域面积,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.先后抛掷两枚均匀的正方体骰子,观察向上的点数,问:
(1)共有多少种不同的结果?
(2)所得点数之和是12的概率是多少?
(3)所得点数之和是4的倍数的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若2x+2y=1,则x+y的最大值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知全集U=R,集合A=$\left\{{x\left|{\left\{{\begin{array}{l}{3-x>0}\\{3x+3>0}\end{array}}\right.}\right.}\right\}$,集合B={m|3>2m-1},求A∪B,∁U(A∩B).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}m\sqrt{1-{x^2}},x∈({-1,1}]\\ 1-|{x-2}|,x∈({1,3}]\end{array}\right.$,其中m>0,且函数f(x)=f(x+4),若方程3f(x)-x=0恰有5个根,则实数m的取值范围是(  )
A.$(\frac{{\sqrt{15}}}{3},\sqrt{7})$B.$(\frac{{\sqrt{15}}}{3},\frac{8}{3})$C.$(\frac{4}{3},\sqrt{7})$D.$(\frac{4}{3},\frac{8}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.$\frac{{1+tan\frac{π}{12}}}{{1-tan\frac{π}{12}}}$的值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow a$=(1,2sinα),$\overrightarrow b$=($\frac{\sqrt{2}}{2}$,$\sqrt{3}$),$\overrightarrow{c}$=($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)且$\overrightarrow a$-$\overrightarrow{c}$∥$\overrightarrow b$,则锐角α为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数$f(x)=\sqrt{3}sinωx+cosωx$(ω>0)的最小正周期为4π,则该函数的图象(  )
A.关于直线x=$\frac{π}{3}$对称B.关于直线x=$\frac{5π}{3}$对称
C.关于点($\frac{π}{3}$,0)对称D.关于点($\frac{5π}{3}$,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知(1+x)(1-ax)6展开式中x2项的系数为21,则实数a=(  )
A.±$\frac{\sqrt{35}}{5}$B.$-\frac{7}{2}$C.1或$-\frac{7}{5}$D.-1或$\frac{7}{5}$

查看答案和解析>>

同步练习册答案