精英家教网 > 高中数学 > 题目详情

【题目】已知函数是偶函数.

(1)求的值;

(2)若函数没有零点,求得取值范围;

(3)若函数 的最小值为0,求实数的值.

【答案】1;(2;(3).

【解析】试题分析:(1)若函数是偶函数,则f(﹣x)=f(x),可得k的值;

2函数没有零点,即方程无实数根,令,则函数的图象与直线无交点,则a不属于函数g(x)值域;

(3)函数 ,令t=2x[13],则y=t2+mtt[13],结合二次函数的图象和性质,分类讨论,可得m的值.

试题解析:

1是偶函数,∴

对任意恒成立.

.

(2)函数没有零点,即方程无实数根.

,则函数的图象与直线无交点,

的取值范围是.

(3)由题意

①当,即时,

②当,即时,

(舍去);

③当,即时,

(舍去).

综上可知,实数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在南北方向有一条公路,一半径为100m的圆形广场(圆心为O)与此公路一边所在直线l相切于点A.点P为北半圆弧(弧APB)上的一点,过P作直线l的垂线,垂足为Q.计划在△PAQ内(图中阴影部分)进行绿化.设△PAQ的面积为S(单位:m2).
(1)设∠BOP=α(rad),将S表示为α的函数;
(2)确定点P的位置,使绿化面积最大,并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=log2x,g(x)=2log2(2x+a),a∈R
(1)求函数f(x)的解析式;
(2)若对任意x∈[1,4],f(4x)≤g(x),求实数a的取值范围;
(3)设a>﹣2,求函数h(x)=g(x)﹣f(x),x∈[1,2]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数fx= a>0a≠1.

(Ⅰ)求函数fx)的定义域;

(Ⅱ)判断函数fx)的奇偶性,并加以证明;

(Ⅲ)设a=,解不等式fx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,底面是边长为1的正方形,侧棱底面,且 是侧棱上的动点.

(1)求四棱锥的表面积;

(2)是否在棱上存在一点,使得平面;若存在,指出点的位置,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 为不同的直线, 不同的平面,则下列判断正确的是()

A. ,则 B. ,则

C. ,则 D. ,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在不为零的常数,使得函数对定义域内的任一均有,则称函数为周期函数,其中常数就是函数的一个周期.

(1)证明:若存在不为零的常数使得函数 对定义域内的任一均有,则此函数是周期函数.

(2)若定义在上的奇函数满足,试探究此函数在区间

内零点的最少个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)=ax2+2x﹣3在区间(﹣∞,4)上是单调递增的,则实数a的取值范围是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx﹣x2+1. (Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x﹣y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若a<0,且对任意x1 , x2∈(0,+∞),x1≠x2 , 都有|f(x1)﹣f(x2)|>|x1﹣x2|,求a的取值范围.

查看答案和解析>>

同步练习册答案