精英家教网 > 高中数学 > 题目详情
设x,y满足约束条件 
2x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,若目标函数z=abx+y,(a>0,b>0)的最大值为10,则a+b的最小值为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作可行域,平移目标直线可得直线过点B(1,4)时,目标函数取最大值,可得ab=6,由基本不等式可得.
解答: 解:作出约束条件 
2x-y+2≥0
8x-y-4≤0
x≥0,y≥0
,所对应的可行域,(如图阴影)
将z=abx+y变形为y=-abx+z,其中a>0,b>0,
经平移直线y=-abx可知,当直线经过点A(0,2)或B(1,4)时,
目标函数取最大值,显然A不合题意,
∴ab+4=10,即ab=6,
由基本不等式可得a+b≥2
ab
=2
6
,当且仅当a=b=
6
时取等号,
故答案为:2
6
点评:本题考查线性规划,涉及基本不等式的应用和分类讨论的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),其右焦点为(1,0),并且经过点(
2
2
3
2
),直线l与C相交于M、N两点,l与x轴、y轴分别相交于P、Q两点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)判断是否存在直线l,使得P、Q是线段MN的两个三等分点,若存在,求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点P在以F1、F2为左、右焦点的双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)上,PF2⊥x轴,|PF2|=3,点D为其右顶点,且|F1D|=3|DF2|.
(1)求双曲线C方程;
(2)设过点F2的直线l与交于双曲线C不同的两点A、B,且满足|OA|2+|OB|2>|AB|2(其中 O为原点),求直线l的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个问题,①x,输出它的相反数.②求面积为6的正方形的周长.③求三个数a,b,c中输入一个数的最大数.④求函数的函数值.其中不需要用条件语句来描述其算法的有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=xex,且fn(x)=f′n-1(x)(n∈N,n≥2),则f2014(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,若A=60°a=2,b=
2
3
3
,则边c的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a=
2
2
(sin17°+cos17°),b=2cos213°-1,c=
3
2
,则a,b,c的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数 y=
x
x-1
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U={1,2,3,4,5,6,7},A={4,5,7},B={3,4},则∁U(A∪B)=
 

查看答案和解析>>

同步练习册答案