精英家教网 > 高中数学 > 题目详情
9.函数y=xsinx+ln(x2+1)在[-π,π]上的图象大致为(  )
A.B.C.D.

分析 根据函数值的特点即可判断.

解答 解:当0<x≤π时,xsinx≥0,ln(x2+1)>0,
∴y>0,故排除B,C,D,
故选:A

点评 本题考查了函数的识别,关键是掌握函数值的变化趋势,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n项和为Sn,且对任意的n∈N*,都有an>0,Sn=$\sqrt{{a_1}^3+{a_2}^3+…+{a_n}^3}$
(I)求a1,a2的值;
(II)求数列{an}的通项公式an
(III)证明:ln2≤an•ln(1+$\frac{1}{{a}_{n}}$)<ln3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx,g(x)=ex
(1)若函数y=ax+f(x)在区间(0,e]上的最大值为-4,求实数a的值;
(2)若函数y=ag(2x)+bg(x)-x有两个不同的零点x1,x2,x0是x1,x2的等差中项,证明:当a>0时,不等式2ag (2x0)+bg(x0)<f(e)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在等差数列{an}中,a1=1,a5=9,数列{an}、{bn}满足$\frac{{a}_{1}}{{b}_{1}}$+$\frac{{a}_{2}}{{b}_{2}}$+$\frac{{a}_{3}}{{b}_{3}}$+…+$\frac{{a}_{n}}{{b}_{n}}$=6-$\frac{{a}_{n+2}}{{b}_{n}}$(n∈N*).
(Ⅰ)求证:数列{bn}是等比数列;
(Ⅱ)求数列{$\frac{2+{a}_{n}}{{b}_{n}}$}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合M={-4,-3,-2,-1,0,1},N={x∈R|x2+3x<0},则M∩N=(  )
A.{-3,-2,-1,0}B.{-2,-1,0}C.{-3,-2,-1}D.{-2,-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}是各项均不为零的等差数列,Sn为其前n项和,且S2n-1=a${\;}_{n}^{2}$(n∈N*),若不等式$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{{a}_{2}a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$≤nlog${\;}_{\frac{1}{8}}$λ对任意n∈N*恒成立,则实数λ的最大值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数$f(x)=\frac{1}{x+2}$,点O为坐标原点,点${A_n}(n,f(n))(n∈{N^*})$,向量$\overrightarrow{i}$=(0,1),θn是向量$\overrightarrow{O{A}_{n}}$与$\overrightarrow{i}$的夹角,则使得$\frac{{cos{θ_1}}}{{sin{θ_1}}}+\frac{{cos{θ_2}}}{{sin{θ_2}}}+\frac{{cos{θ_3}}}{{sin{θ_3}}}+…+\frac{{cos{θ_n}}}{{sin{θ_n}}}<t$恒成立的实  数t的取值范围为t≥$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆C的圆心在坐标轴上,且经过点(6,0)及椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$的两个顶点,则该圆的标准方程为(  )
A.(x-2)2+y2=16B.x2+(y-6)2=72C.${(x-\frac{8}{3})^2}+{y^2}=\frac{100}{9}$D.${(x+\frac{8}{3})^2}+{y^2}=\frac{100}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的前n项和Sn满足Sn+Sm=Sn+m(n,m∈N*)且a1=5,则a8=(  )
A.40B.35C.12D.5

查看答案和解析>>

同步练习册答案