精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)的定义域为(-2,2),导函数为f'(x)=x2+2cosx且f(0)=0,则满足f(x-1)+f(x2-x)>0的实数x的范围是(  )
A.(1,2)B.(-2,-1)∪(1,2)C.(-1,3)D.(-∞,-1)∪(1,+∞)

分析 由导函数可求原函数f(x),判断函数f(x)单调性和奇偶性,利用奇偶性将不等式f(x-1)+f(x2-x)>0转化成f(x-1)>f(-x2+x),利用单调性去掉函数符号f 即可解得所求,注意自变量本身范围.

解答 解:∵f′(x)=x2+2cosx,
∴f(x)=$\frac{1}{3}$x3+2sinx+C;
又f(0)=0得,f(x)=x3+2sinx;
则f(x)为奇函数,且为增函数;
故f(x-1)+f(x2-x)>0可化为等价于f(x-1)>f(-x2+x),
$\left\{\begin{array}{l}{x-1>-{x}^{2}+x}\\{-2<x-1<2}\\{-2<-{x}^{2}+x<2}\end{array}\right.$
解得1<x<2,
故选:A.

点评 本题主要考查了函数的单调性与导数的关系,以及函数的单调性和奇偶性,同时考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.cos12°sin72°-sin12°cos72°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1的离心率为$\sqrt{2}$,则双曲线的两渐近线的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为(1,-1),则椭圆E的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx-$\frac{b}{x}$,g(x)=-3x+4.
(1)若函数f(x)在点(1,f(1))处的切线为2x-y-3=0,求a,b的值;
(2)若b=-1,当x≥1时,f(x)≥g(x)恒成立,求实数a的取值范围;
(3)求证:对于一切正整数n,恒有$\frac{2}{4×{1}^{2}-1}$+$\frac{3}{4×{2}^{2}-1}$+$\frac{4}{4×{3}^{2}-1}$+…+$\frac{n+1}{4×{n}^{2}-1}$>$\frac{1}{4}$ln(2n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=x(x-1)(x-2)…(x-5),则f′(0)=-120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数y=cos(2x-$\frac{π}{6}$)的图象向左平移$\frac{1}{4}$个周期后,所得图象对应的解析式(  )
A.y=cos(2x+$\frac{π}{12}$)B.y=cos(2x+$\frac{π}{3}$)C.y=cos(2x-$\frac{2π}{3}$)D.y=cos(2x-$\frac{5π}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx+ax的函数图象在点(1,f(1))处的切线平行于x轴.
(1)求函数f(x)的极值;
(2)若直线y=kx+b与函数f(x)的图象交于两点A(x1,y1),B(x2,y2)(x1<x2).
证明:$\frac{1-{x}_{2}}{{x}_{2}}$<k<$\frac{1-{x}_{1}}{{x}_{1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设2a=5b=m,且$\frac{1}{a}$+$\frac{1}{b}$=1,则m等于(  )
A.$\sqrt{10}$B.10C.20D.100

查看答案和解析>>

同步练习册答案