| A. | (1,2) | B. | (-2,-1)∪(1,2) | C. | (-1,3) | D. | (-∞,-1)∪(1,+∞) |
分析 由导函数可求原函数f(x),判断函数f(x)单调性和奇偶性,利用奇偶性将不等式f(x-1)+f(x2-x)>0转化成f(x-1)>f(-x2+x),利用单调性去掉函数符号f 即可解得所求,注意自变量本身范围.
解答 解:∵f′(x)=x2+2cosx,
∴f(x)=$\frac{1}{3}$x3+2sinx+C;
又f(0)=0得,f(x)=x3+2sinx;
则f(x)为奇函数,且为增函数;
故f(x-1)+f(x2-x)>0可化为等价于f(x-1)>f(-x2+x),
$\left\{\begin{array}{l}{x-1>-{x}^{2}+x}\\{-2<x-1<2}\\{-2<-{x}^{2}+x<2}\end{array}\right.$
解得1<x<2,
故选:A.
点评 本题主要考查了函数的单调性与导数的关系,以及函数的单调性和奇偶性,同时考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=cos(2x+$\frac{π}{12}$) | B. | y=cos(2x+$\frac{π}{3}$) | C. | y=cos(2x-$\frac{2π}{3}$) | D. | y=cos(2x-$\frac{5π}{12}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | 10 | C. | 20 | D. | 100 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com