精英家教网 > 高中数学 > 题目详情
16.如图,空间四边形ABCD中,AB⊥CD,DE是AB与CD的公垂线段,且 AE=BE=DE.
(1)证明:AC⊥BD;
(2)若∠ACB=60°,求直线BD与平面ABC所成的角的大小.

分析 (1)证明CD⊥平面ABD,AD⊥BD,即可证明AC⊥BD;
(2)连结CE,作DH⊥CE于H,连结BH,确定BD与平面ABC所成的角为∠DBH,即可求直线BD与平面ABC所成的角的大小.

解答 (1)证明:由已知AB⊥CD,DE⊥CD,AB∩DE=E,
可得CD⊥平面ABD.
又△ABD中,AE=BE=DE,DE⊥AB,
∴AD=BD,AD⊥BD,
又AD为AC在平面ABD内的射影,
∴AC⊥BD;
(2)解:连结CE,作DH⊥CE于H,连结BH.
由AB⊥DE,AB⊥CD知,AB⊥平面CDE,
∴平面ABC⊥平面CDE,
又DH⊥CE,∴DH⊥平面ABC,
故BD与平面ABC所成的角为∠DBH.
∵Rt△CAD≌Rt△CBD,
∴AC=BC,
又∠ACB=60°,
∴△ABC为等边三角形.
记AB=a,则CE=$\frac{\sqrt{3}}{2}$a,DE=$\frac{1}{2}$a,BD=$\frac{\sqrt{2}}{2}$a.
在Rt△CDE中,CD=$\frac{\sqrt{2}}{2}$a,∴DH=$\frac{CD•DE}{CE}$=$\frac{\sqrt{6}}{6}$a,
故在Rt△BDH中,sin∠DBH=$\frac{\sqrt{3}}{3}$,
故BD与平面ABC所成的角为arcsin$\frac{\sqrt{3}}{3}$.

点评 本题考查线面垂直的判定与性质,考查线面角,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若同时抛3枚硬币,事件“恰有两枚正面向上”的概率为a,“至少一枚正面向上”的概率为b,则函数y=logb(x-8a)过定点(4,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在$\widehat{AB}$上,且OM∥AC.
(1)求证:平面MOE∥平面PAC;
(2)求证:平面PAC⊥PCB;
(3)设二面角M-BP-C的大小为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正四面体ABCD的棱长为a,EFG分别是AB,AC,CD的中点,截面EFG交棱BD于H则点A到截面EFGH的距离是$\frac{\sqrt{2}}{2}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在直三棱柱ABC-A1B1C1中,∠ACB=90°,CA=CB=CC1=1,则直线A1B与平面BB1C1C所成角的正弦值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{15}}}{5}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是边长为2的菱形,∠BAD=60°,E是PC的中点.
(1)求证:PC⊥BD;
(2)若四棱锥P-ABCD的体积为4,求DE与平面PAC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某校开展校园文化活动,其中一项是背诵古诗100首,在该项进行一段时间后,随机抽取40人,统计调查了他们会背古诗的首数,得到的数据如下:
20 21 22 23 24 24 25 26 26 27 28 29 29 29 30 30 30 31 31 31
32 32 33 34 35 35 36 36 37 38 38 38 40 40 41 42 42 43 46 48
(1)根据调查数据补全如下分组为[20,25),[25,30),…[40,45),[45,50)的频率直方图;

(2)从会背的古诗首数在区间[30,40)内的同学中随机抽取2人,求会背的古诗首数在区间[30,35),[35,40)内各有一人的概率;
(3)从会背的古诗首数在区间[30,40)内的同学中随机抽取2人,求会背的古诗首数在区间[35,40)内的人数,ξ的概率分别列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个几何体的三视图(单位:m),则该几何体的体积为44m3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,F1、F2为其左、右焦点,且|F1F2|=2,动直线l:y=kx+m与椭圆C有且仅有一个公共点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1、F2分别作直线l的垂线,垂足分别为P、Q,求四边形PF1F2Q面积的最大值.

查看答案和解析>>

同步练习册答案