精英家教网 > 高中数学 > 题目详情
5.一个几何体的三视图(单位:m),则该几何体的体积为44m3

分析 画出几何体的直观图,利用三视图的数据求解几何体是体积即可.

解答 解:由题意可知几何体的直观图如图:
几何体是五棱柱,
可得几何体的体积为:$(3×3+\frac{3+1}{2}×1)×4$=44(m3).
故答案为:44.

点评 本题考查几何体的三视图,直观图的画法,几何体的体积的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在如图所示的空间直角坐标系中,正方体ABCD-A1B1C1D1的棱长为2,E,F分别为A1D1和A1B1的中点.
(1)求异面直线AE和BF所成角的余弦值;
(2)求平面B1BDD1与平面BFC1所成的锐二面角的余弦值;
(3)若点P在正方形ABCD内部或其边界上,且EP∥平面BFC1,求EP的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,空间四边形ABCD中,AB⊥CD,DE是AB与CD的公垂线段,且 AE=BE=DE.
(1)证明:AC⊥BD;
(2)若∠ACB=60°,求直线BD与平面ABC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图如图所示:老板根据销售量给以店员奖励,具体奖励规定如表:
销售量X个X<100100≤X<150150≤X<200X≥200
奖励金额(元)050100150
(1)求在未来连续3天里,店员共获得奖励150元的概率
(2)记未来连续2天,店员获得奖励X元,求随机变量X的分布列及数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期及对称中心;
(2)求函数f(x)的减区间及对称轴;
(3)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设实数x,y满足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,求$μ=\frac{xy}{{x}^{2}+{y}^{2}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-1,0),抛物线x2=2py上的点($\sqrt{2}$,1)处的切线经过椭圆C的下顶点.
(1)求椭圆C的标准方程;
(2)过点F1的动直线l交椭圆C于A、B两点(异于长轴端点).请问是否存在实常数λ,使得|$\overrightarrow{{F}_{2}A}$-$\overrightarrow{{F}_{2}B}$|=λ$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{2}B}$恒成立?若存在,请求出λ的值;若不存在,请说明理由;
(3)在(2)的条件下,求△ABF2(F2为椭圆C的右焦点)内切圆面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.△ABC的内角A,B,C的对边分别为a,b,c,若a,b,c,成等比数列,且c=2a,则cosC=(  )
A.$\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某人在5场投篮比赛中得分的茎叶图如图所示,若五场比赛的平均得分为11分,则这五场比赛得分的方差为8.

查看答案和解析>>

同步练习册答案