精英家教网 > 高中数学 > 题目详情
14.△ABC的内角A,B,C的对边分别为a,b,c,若a,b,c,成等比数列,且c=2a,则cosC=(  )
A.$\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

分析 由a,b,c成等比数列,利用等比数列的性质得到b2=ac,把c=2a代入表示出b,利用余弦定理表示出cosC,将表示出的b与c代入求出cosC的值即可.

解答 解:∵a,b,c成等比数列,
∴b2=ac,
把c=2a代入得:b2=ac=2a2,即b=$\sqrt{2}$a,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{{a}^{2}+2{a}^{2}-4{a}^{2}}{2\sqrt{2}{a}^{2}}$=-$\frac{\sqrt{2}}{4}$,
故选:B.

点评 此题考查了余弦定理,以及等比数列的性质,熟练掌握余弦定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.正四面体ABCD的棱长为a,EFG分别是AB,AC,CD的中点,截面EFG交棱BD于H则点A到截面EFGH的距离是$\frac{\sqrt{2}}{2}a$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个几何体的三视图(单位:m),则该几何体的体积为44m3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z满足z(1+i)=1(其中i为虚数单位),则z的共轭复数是(  )
A.$\frac{1+i}{2}$B.$\frac{1-i}{2}$C.$\frac{-1+i}{2}$D.$\frac{-1-i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=logmx(m>0且m≠1),点(an,2n)在函数f(x)的图象上.
(Ⅰ)若bn=an•f(an),当m=$\frac{{\sqrt{3}}}{3}$时,求数列{bn}的前n项和Sn
(Ⅱ)设cn=$\frac{a_n}{m^n}•lg\frac{a_n}{m^n}$,若数列{cn}是单调递增数列,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow m$=$({cosx,cos({x+\frac{π}{6}})}),\overrightarrow n$=$({\sqrt{3}sinx$+cosx,2sinx}),且满足f(x)=$\overrightarrow m•\overrightarrow n$.
(Ⅰ)求函数f(x)的对称轴方程;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{6}$个单位得到g(x)的图象,当x∈[0,π]时,求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,F1、F2为其左、右焦点,且|F1F2|=2,动直线l:y=kx+m与椭圆C有且仅有一个公共点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过F1、F2分别作直线l的垂线,垂足分别为P、Q,求四边形PF1F2Q面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ax2+bx+c,则f(-$\frac{b}{2a}$)=$\frac{4ac-{b}^{2}}{4a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=alnxx+bx,(x∈(0,+∞)的图象过点($\frac{1}{e}$,-$\frac{1}{e}$),且在点(1,f(1))处的切线与直线x+y-e=0垂直.
(1)求a,b的值.
(2)若存在x0∈[$\frac{1}{e}$,e](e为自然对数的底数,且e=2.71828…),使得不等式f(x0)=$\frac{1}{2}$x02-$\frac{1}{2}$tx0≥-$\frac{3}{2}$成立,求实数t的取值范围;
(3)设函数f(x)的图象上从左至右依次存在三个点B(b,f(b)),C(c,f(c)),D(d,f(d)),且2c=b+d,求证:f(b)+f(d)-2f(c)<(d-b)ln2.

查看答案和解析>>

同步练习册答案