精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=logmx(m>0且m≠1),点(an,2n)在函数f(x)的图象上.
(Ⅰ)若bn=an•f(an),当m=$\frac{{\sqrt{3}}}{3}$时,求数列{bn}的前n项和Sn
(Ⅱ)设cn=$\frac{a_n}{m^n}•lg\frac{a_n}{m^n}$,若数列{cn}是单调递增数列,求实数m的取值范围.

分析 (Ⅰ)通过点(an,2n)在函数f(x)的图象上可得an=m2n,结合当m=$\frac{\sqrt{3}}{3}$时bn=2n•($\frac{1}{3}$)n,求出Sn、$\frac{1}{3}$Sn的表达式,利用错位相减法及等比数列的求和公式即得结论;
(Ⅱ)通过cn=mnnlgm及数列{cn}是单调递增数列,可得nlgm<m(n+1)lgm对任意的n∈N*都成立,分0<m<1、m>1两种情况讨论即可.

解答 解:(Ⅰ)由题意可得logman=2n,∴an=m2n
当m=$\frac{\sqrt{3}}{3}$时,bn=an•logman=m2n•2n=2n•($\frac{1}{3}$)n
∴Sn=2•$\frac{1}{3}$+4•($\frac{1}{3}$)2+6•($\frac{1}{3}$)3+…+(2n-2)•($\frac{1}{3}$)n-1+2n•($\frac{1}{3}$)n
∴$\frac{1}{3}$Sn=2•($\frac{1}{3}$)2+4•($\frac{1}{3}$)3+6•($\frac{1}{3}$)4+…+(2n-2)•($\frac{1}{3}$)n+2n•($\frac{1}{3}$)n+1
两式相减,得$\frac{2}{3}$Sn=$\frac{2}{3}$+2[($\frac{1}{3}$)2+($\frac{1}{3}$)3+($\frac{1}{3}$)4+…+($\frac{1}{3}$)n]-2n•($\frac{1}{3}$)n+1
=$\frac{2}{3}$+2•$\frac{(\frac{1}{3})^{2}[1-(\frac{1}{3})^{n-1}]}{1-\frac{1}{3}}$-2n•($\frac{1}{3}$)n+1
=1-(2n+3)•($\frac{1}{3}$)n+1
∴Sn=$\frac{3}{2}$-$\frac{2n+3}{2•{3}^{n}}$;
(Ⅱ)由题意得cn=$\frac{a_n}{m^n}•lg\frac{a_n}{m^n}$=$\frac{{m}^{2n}}{{m}^{n}}$•$lg\frac{{m}^{2n}}{{m}^{n}}$=mnnlgm,
∵数列{cn}是单调递增数列,
∴cn<cn+1对任意的n∈N*都成立,
∴mnnlgm<mn+1(n+1)lgm,
即nlgm<m(n+1)lgm对任意的n∈N*都成立,
当0<m<1时,m<$\frac{n}{n+1}$=1-$\frac{1}{n+1}$对任意的n∈N*都成立,
设h(x)=1-$\frac{1}{n+1}$,易知h(n)是递增函数,h(n)min=h(1)=$\frac{1}{2}$,
∴0<m<$\frac{1}{2}$;
当m>1时,m>$\frac{n}{n+1}$=1-$\frac{1}{n+1}$,
∵1-$\frac{1}{n+1}$<1对任意的n∈N*都成立,
∴m≥1且m>1,∴m>1,
综上所述,0<m<$\frac{1}{2}$或m>1.

点评 本题考查求数列的和,涉及到函数的单调性、对数的运算性质等知识,考查分类讨论的思想,利用错位相减法是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在正三棱柱ABC-A1B1C1中,已知AB=1,D在棱BB1上,且BD=1,则AD与平面ACC1A1所成的角的正弦值为(  )
A.$\frac{{\sqrt{6}}}{4}$B.-$\frac{{\sqrt{6}}}{4}$C.$\frac{{\sqrt{10}}}{4}$D.-$\frac{{\sqrt{10}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x-1,x∈R.
(1)求函数f(x)的最小正周期及对称中心;
(2)求函数f(x)的减区间及对称轴;
(3)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F1(-1,0),抛物线x2=2py上的点($\sqrt{2}$,1)处的切线经过椭圆C的下顶点.
(1)求椭圆C的标准方程;
(2)过点F1的动直线l交椭圆C于A、B两点(异于长轴端点).请问是否存在实常数λ,使得|$\overrightarrow{{F}_{2}A}$-$\overrightarrow{{F}_{2}B}$|=λ$\overrightarrow{{F}_{1}A}$•$\overrightarrow{{F}_{2}B}$恒成立?若存在,请求出λ的值;若不存在,请说明理由;
(3)在(2)的条件下,求△ABF2(F2为椭圆C的右焦点)内切圆面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为(  )
A.$\frac{{\sqrt{3}π}}{4}$B.$\frac{{\sqrt{3}π}}{2}$C.$\sqrt{3}π$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.△ABC的内角A,B,C的对边分别为a,b,c,若a,b,c,成等比数列,且c=2a,则cosC=(  )
A.$\frac{{\sqrt{2}}}{4}$B.$-\frac{{\sqrt{2}}}{4}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=logmx(m>0且m≠1),点(an,2n)在函数f(x)的图象上.
(Ⅰ)若bn=an•f(an),当m=$\frac{{\sqrt{3}}}{3}$时,求数列{bn}的前n项和Sn
(Ⅱ)设cn=an•log2an,若数列{cn}是单调递增数列,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一人划船从9时15分出发,12时返回,水流速度1.4千米/时,船在静水中速度3km/h,该人划30分钟,休息15分钟(休息时船不动),在某次休息后立即返回,问该人最多离港口多远?返回时为何时?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的方程为2x+(1+m)y+2m=0,m∈R,点P的坐标为(-1,0).
(1)求证:直线l恒过定点,并求出定点坐标;
(2)求点P到直线l的距离的最大值;
(3)设点P在直线l上的射影为点M,N的坐标为(2,1),求线段MN长的取值范围.

查看答案和解析>>

同步练习册答案