精英家教网 > 高中数学 > 题目详情
4.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个等腰直角三角形,则该几何体外接球的体积为(  )
A.$\frac{{\sqrt{3}π}}{4}$B.$\frac{{\sqrt{3}π}}{2}$C.$\sqrt{3}π$D.

分析 三视图可知该几何体为一个四棱锥,从一个顶点出发的三条棱两两互相垂直,可将该四棱锥补成正方体,再去求解.

解答 解:由三视图知该几何体为四棱锥,记作S-ABCD,
其中SA⊥面ABCD.面ABCD为正方形,将此四棱锥补成正方体,易知正方体的体对角线即为外接球直径,
所以2r=$\sqrt{3}$.
所以体积V=$\frac{4}{3}π•(\frac{\sqrt{3}}{2})^{3}$=$\frac{\sqrt{3}π}{2}$
故选B.

点评 本题考查三视图求几何体的体积,考查计算能力,空间想象能力,转化能力,将四棱锥补成正方体是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知几何体A-BCPM的三视图如图所示,侧视图是直角三角形,正视图是一个梯形.

(1)求证:PC⊥AB;
(2)求二面角M-AC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.当输入的实数x∈[2,30]时,执行如图所示的程序框图,则输出的x不小于103的概率是$\frac{9}{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知正三棱锥P-ABC中,M、N分别是AB和AP的中点,若MN⊥CN,则此正三棱锥的侧面积与底面ABC的面积之比为(  )
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在R上的周期为2的奇函数,当x∈(0,1)时,f(x)=3x-1.则f($\frac{2015}{2}$)=1-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=logmx(m>0且m≠1),点(an,2n)在函数f(x)的图象上.
(Ⅰ)若bn=an•f(an),当m=$\frac{{\sqrt{3}}}{3}$时,求数列{bn}的前n项和Sn
(Ⅱ)设cn=$\frac{a_n}{m^n}•lg\frac{a_n}{m^n}$,若数列{cn}是单调递增数列,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)(x∈R)满足f(1)=1,且f′(x)<1,则不等式f(1g2x)<1g2x的解集为(  )
A.$({0,\frac{1}{10}})$B.$({0,\frac{1}{10}})∪({10,+∞})$C.$({\frac{1}{10},10})$D.(10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法正确的是(  )
A.“若平面上两直线互相垂直,则这两条直线的斜率之积为-1”为真命题
B.命题“?x∈R,2x>0”的否定是“?x0∈R,${2}^{{x}_{0}}$≤0”
C.命题“幂函数y=${x}^{\frac{1}{3}}$的定义域为R”是假命题
D.在△ABC中,“A>B”是“sinA>sinB”的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在多面体ABCDE中,面ABED为梯形且∠BAD=∠EDA=$\frac{π}{2}$,F为CE的中点,AC=AD=CD=DE=AF=2,AB=1.
(1)求证:DF⊥BC;
(2)求平面BCE与平面ACD所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案