分析 (1)取CD的中点O,连接AO,FO,则AO⊥CD,证明AO⊥OF,可得AO⊥平面CDE,建立如图所示的坐标系,利用向量的方法证明DF⊥BC;
(2)确定平面BCE与平面ACD的法向量,即可求平面BCE与平面ACD所成锐二面角的余弦值.
解答
(1)证明:取CD的中点O,连接AO,FO,则AO⊥CD
由题意,AO=$\sqrt{3}$,OF=1,
∵AF=2,
∴AO⊥OF,
∵CD∩OF=O,
∴AO⊥平面CDE,
建立如图所示的坐标系,则D(1,0,0),F(0,1,0),B(0,1,$\sqrt{3}$),C(-1,0,0),
∴$\overrightarrow{DF}$=(-1,1,0),$\overrightarrow{BC}$=(-1,-1,-$\sqrt{3}$),
∴$\overrightarrow{DF}•\overrightarrow{BC}$=0,
∴DF⊥BC;
(2)解:由(1)可得DF⊥平面CBE
∴平面CBE的法向量为$\overrightarrow{DF}$=(-1,1,0),
∵平面ACD的法向量为(0,1,0),
∴平面BCE与平面ACD所成锐二面角的余弦值为$\frac{1}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
点评 解决立体几何中的线、面的位置关系或度量关系,常用的方法是通过建立空间直角坐标系,转化为向量的问题来解决.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{3}π}}{4}$ | B. | $\frac{{\sqrt{3}π}}{2}$ | C. | $\sqrt{3}π$ | D. | 3π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $8+2\sqrt{2}$ | B. | $8+4\sqrt{2}$ | C. | $12+2\sqrt{2}$ | D. | $12+4\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com