分析 (1)由sinθ+cosθ=$\frac{\sqrt{6}}{2}$两边同时平方,利用同角三角函数关系式能求出sin2θ.
(2)由θ∈(0,$\frac{π}{4}$),得2θ∈(0,$\frac{π}{2}$),利用同角三角函数关系式求出cos2θ,由此利用正弦加法定理能求出sin(2θ+$\frac{π}{4}$)的值.
解答 解:(1)∵θ∈(0,$\frac{π}{4}$),且sinθ+cosθ=$\frac{\sqrt{6}}{2}$,
∴1+2sinθcosθ=$\frac{3}{2}$,
∴sin2θ=2sinθcosθ=$\frac{3}{2}$-1=$\frac{1}{2}$.
(2)∵θ∈(0,$\frac{π}{4}$),∴2θ∈(0,$\frac{π}{2}$),
∴cos2θ=$\sqrt{1-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,
∴sin(2θ+$\frac{π}{4}$)=sin2θcos$\frac{π}{4}$+cos2θsin$\frac{π}{4}$
=$\frac{1}{2}×\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}×\frac{\sqrt{2}}{2}$
=$\frac{\sqrt{2}+\sqrt{6}}{4}$.
点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意同角三角函数关系式的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com