分析 先设线段其中两段的长度分别为x、y,分别表示出线段随机地折成3段的x,y的约束条件和3段构成三角形的约束条件,再画出约束条件表示的平面区域,利用面积测度即可求出构成三角形的概率.
解答 解:设三段长分别为x,y,1-x-y,
则总样本区域为 $\left\{\begin{array}{l}{0<x<1}\\{0<y<1}\\{x+y<1}\end{array}\right.$,所表示的平面区域为三角形OAB,其面积为$\frac{1}{2}$,
能构成三角形的事件的区域为 $\left\{\begin{array}{l}{x+y>1-x-y}\\{x+1-x-y>y}\\{y+1-x-y>x}\end{array}\right.$,所表示的平面区域为三角形DEF,其面积为$\frac{1}{8}$,
则所求概率P=$\frac{{S}_{△DEF}}{{S}_{△AOB}}$=$\frac{1}{4}$.
故答案为:$\frac{1}{4}$.![]()
点评 本题考查几何概型概率公式,考查三角形边的关系,考查线性规划的简单应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 动作 | K | D | ||
| 得分 | 100 | 80 | 40 | 10 |
| 概率 | $\frac{3}{4}$ | $\frac{1}{4}$ | $\frac{3}{4}$ | $\frac{1}{4}$ |
| 动作 | K | D | ||
| 得分 | 90 | 50 | 20 | 0 |
| 概率 | $\frac{9}{10}$ | $\frac{1}{10}$ | $\frac{9}{10}$ | $\frac{1}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com