分析 由已知求得G、H的坐标,得到$\overrightarrow{OG}、\overrightarrow{OH}$的坐标,代入数量积求得${{y}_{0}}^{2}=\frac{1}{2}({a}^{2}-{{x}_{0}}^{2})$,再由D在椭圆上可得$\frac{{{x}_{0}}^{2}}{{a}^{2}}+\frac{{{y}_{0}}^{2}}{{b}^{2}}=1$,联立即可求得答案.
解答 解:由直线l:xx0+yy0=2a与直线x=±2分别交于G、H两点,得G(2,$\frac{2a-2{x}_{0}}{{y}_{0}}$),H(-2,$\frac{2a+2{x}_{0}}{{y}_{0}}$),
由$\overrightarrow{OG}•\overrightarrow{OH}$=4,得$-4+\frac{4{a}^{2}-4{{x}_{0}}^{2}}{{{y}_{0}}^{2}}$=4,即${{y}_{0}}^{2}=\frac{1}{2}({a}^{2}-{{x}_{0}}^{2})$,①
又点D(x0,y0)在椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上,
∴$\frac{{{x}_{0}}^{2}}{{a}^{2}}+\frac{{{y}_{0}}^{2}}{{b}^{2}}=1$,②
联立①②,得$(2{b}^{2}-{a}^{2})({{x}_{0}}^{2}-{a}^{2})=0$,
∴a2=2b2,则a2=2(a2-c2),即a2=2c2,解得e=$\frac{\sqrt{2}}{2}$.
故答案为:$\frac{\sqrt{2}}{2}$.
点评 本题考查椭圆的简单性质,考查了直线与圆锥曲线位置关系的应用,考查椭圆离心率的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | -1 | 0 | 1 | 2 | 3 |
| ex | 0.37 | 1 | 2.72 | 7.39 | 20.09 |
| x+2 | 1 | 2 | 3 | 4 | 5 |
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 该命题的逆命题为真,逆否命题也为真 | |
| B. | 该命题的逆命题为真,逆否命题也假 | |
| C. | 该命题的逆命题为假,逆否命题为真 | |
| D. | 该命题的逆命题为假,逆否命题也为假 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $f(x)=x,g(x)={(\sqrt{x})^2}$ | B. | $f(x)=\left|x\right|,g(x)=\sqrt{[}3]{x^3}$ | ||
| C. | $f(x)={x^2},g(x)=\left\{\begin{array}{l}{x^2},(x>0)\\-{x^2},(x<0)\end{array}\right.$ | D. | $f(x)=\frac{{{x^2}-1}}{x-1},g(t)=t+1(t≠1)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com