精英家教网 > 高中数学 > 题目详情
20.命题“?x∈R,sin2x>1”的否定是(  )
A.?x∈R,sin2x≤1B.?x∉R,sin2x>1C.?x0∈R,sin2x≤1D.?x0∉R,sin2x>1

分析 命题的否定,将量词与结论同时否定,按照这个规则,我们可以得出结论.

解答 解:命题的否定,将量词与结论同时否定
命题“?x∈R,sin2x>1”的否定是“?x0∈R,sin2x0≤1”
故选:C.

点评 命题的否定是有规律的,一般来说要将量词与结论同时否定,全称命题变为特称性命题,特称性命题变为全称命题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若cosθ=-$\frac{{\sqrt{5}}}{5}$,θ∈[0,π],则tanθ=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$sin(2x+\frac{π}{4})$
(1)求f(x)的单调增区间
(2)若$α∈(\frac{π}{2},\frac{3π}{4})$,且$f(\frac{α}{2})=\frac{{\sqrt{2}}}{10}$,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≥0}\\{2x+y≤1}\end{array}\right.$,记z=4x+y的最大值为a,则${∫}_{0}^{\frac{π}{a}}$(cos$\frac{x}{2}$-sin$\frac{x}{2}$)2dx=$\frac{π}{3}-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直线m,l,平面α,β,且m⊥α,l?β,给出下列命题:①若α∥β,则m⊥l;  ②若α⊥β,则m∥l;  ③若m⊥l,则α⊥β;   ④若m∥l,则α⊥β.其中正确的命题的是(  )
A.①②B.③④C.①④D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图1,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图2的五棱锥P-ABFED.

(1)求证:BD⊥PA;
(2)当 PA=$\sqrt{30}$时,求三棱锥A-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx,g(x)=ax2-bx(a、b为常数).
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)当函数g(x)在x=2处取得极值-2.求函数g(x)的解析式;
(3)当$a=\frac{1}{2}$时,设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.请先阅读:在等式cos2x=2cos2x-1(x∈R)的两边求导,得(cos2x)′=(2cos2x-1)′,由求导法则,得(-sin2x)•2=4cosx•(-sinx),化简得等式:sin2x=2cosx•sinx,利用上面的想法(或其他方法),求和$\sum_{k=1}^{n}$3k-1•k${C}_{n}^{k}$=n•4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知三角形ABC的三个顶点都在椭圆$\frac{x^2}{a^2}+{y^2}=1(a>1)$上,其中A(0,1).
(1)若点B,C关于原点对称,且直线AB,AC的斜率乘积为$-\frac{1}{4}$,求椭圆方程;
(2)若三角形ABC是以A为直角顶点的直角三角形,该三角形的面积的最大值为$\frac{27}{8}$,求实数a的值.

查看答案和解析>>

同步练习册答案