精英家教网 > 高中数学 > 题目详情
10.若cosθ=-$\frac{{\sqrt{5}}}{5}$,θ∈[0,π],则tanθ=(  )
A.-2B.$-\frac{1}{2}$C.$\frac{1}{2}$D.2

分析 由cosθ的值及θ的范围,利用同角三角函数间的基本关系求出sinθ的值,即可确定出tanθ的值.

解答 解:∵cosθ=-$\frac{{\sqrt{5}}}{5}$<0,θ∈[0,π],
∴θ∈($\frac{π}{2}$,π],
∴sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{2\sqrt{5}}{5}$,
则tanθ=$\frac{sinθ}{cosθ}$=-2,
故选:A.

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知数列{an}的首项a1=1,an+1=$\frac{3{a}_{n}}{{a}_{n}+1}$,n∈N+
(Ⅰ)证明:数列{$\frac{1}{{a}_{n}}-\frac{1}{2}$}是等比数列;
(Ⅱ)求数列{$\frac{2n}{{a}_{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知点S(0,3),过点S作直线SM,SN与圆Q:x2+y2-2y=0和抛物线C:x2=-2py(p>0)都相切.
(1)求抛物线C和两切线的方程;
(2)设抛物线的焦点为F,过点P(0,-2)的直线与抛物线相交于A,B两点,与抛物线的准线交于点C(其中点B靠近点C),且|AF|=5,求△BCF与△ACF的面积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若数列{xn}满足:$\frac{1}{{{x_{n+1}}}}-\frac{1}{x_n}$=d(d为常数,n∈N*),则称{xn}为调和数列.已知数列{an}为调和数列,且a1=1,$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+\frac{1}{a_5}$=15.
(Ⅰ)求数列{an}的通项an
(Ⅱ)数列$\left\{{\frac{2^n}{a_n}}\right\}$的前n项和为Sn,是否存在正整数n,使得Sn≥2015?若存在,求出n的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量$\overrightarrow{{e}_{1}}$=$(\begin{array}{l}{2}\\{3}\end{array})$并有特征值λ2=-1及属于特征值-1的一个特征向量$\overrightarrow{{e}_{2}}$=$(\begin{array}{l}{1}\\{-1}\end{array})$,$\overrightarrow{α}$=$(\begin{array}{l}{-1}\\{1}\end{array})$
(Ⅰ)求矩阵M;
(Ⅱ)求M5$\overrightarrow{α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)的定义域为D,如果存在正实数k,对于任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”,已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2015型增函数”,则实数a的取值范围是a<$\frac{2015}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow{b}$=(5,2),则向量$\overrightarrow{a}$+$\overrightarrow{b}$=(3,6).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:cm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如表:
甲厂:
分组[29.86,
29.90 )
[29.90,
29.94)
[29.94,
29.98)
[29.9 8,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
频数12638618292614
乙厂:
分组[29.86,
29.90)
[29.90,
29.94)
[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
频数297185159766218
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.
甲厂乙厂合计
优质品
非优质品
合计
附K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,
p(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题“?x∈R,sin2x>1”的否定是(  )
A.?x∈R,sin2x≤1B.?x∉R,sin2x>1C.?x0∈R,sin2x≤1D.?x0∉R,sin2x>1

查看答案和解析>>

同步练习册答案