精英家教网 > 高中数学 > 题目详情
5.如图1,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图2的五棱锥P-ABFED.

(1)求证:BD⊥PA;
(2)当 PA=$\sqrt{30}$时,求三棱锥A-PBD的体积.

分析 (1)利用线面垂直的判定证明BD⊥平面POA,证明BD⊥AO,PO⊥BD即可;然后证明BD⊥PA.
(2)求出底面面积与高,利用体积公式,可得结论.

解答 (1)证明:在菱形ABCD中,∵BD⊥AC,∴BD⊥AO.
∵EF⊥AC,∴PO⊥EF,
∵平面PEF⊥平面ABFED,平面PEF∩平面ABFED=EF,且PO?平面PEF,
∴PO⊥平面ABFED,
∵BD?平面QBFED,∴PO⊥BD.
∵AO∩PO=O,所以BD⊥平面POA.
∵PA?平面POA,
∴BD⊥PA.
(2)解:由题意可得:AO=3$\sqrt{3}$,PO⊥平面ABFED,PA=$\sqrt{30}$,
∴PO=$\sqrt{30-(3\sqrt{3})^{2}}$=$\sqrt{3}$.
底面ABD的面积为:$\frac{\sqrt{3}}{4}×{(4)}^{2}$=4$\sqrt{3}$.
三棱锥A-PBD的体积:$\frac{1}{3}×4\sqrt{3}×\sqrt{3}$=4.

点评 本题考查线面垂直,考查棱锥体积的计算,掌握线面垂直的判定方法,正确求体积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设函数f(x)的定义域为D,如果存在正实数k,对于任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”,已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2015型增函数”,则实数a的取值范围是a<$\frac{2015}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了保护环境,某化工厂政府部门的支持下,进行技术改进:每天把工业废气转化为某种化工产品和符合排放要求的气体.该工厂日处理废气的能力不低于40吨但不超过70吨.经测算,该工厂处理废气的成本y(元)与处理废气量x(吨)之间的函数关系可近似地表示为:y=2x2-120x+5000,且每处理1吨工业废气可得价值为60元的某种化工产品.
(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,为了保证工厂在每天生产中都不出现亏损现象,国家财政部门补贴至少每天多少元?
(2)若国家给予企业处理废气每吨70元财政补贴,当工厂处理量为多少吨时,工厂处理每吨废气平均收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若$\overrightarrow{OE}=\frac{1}{2}(\overrightarrow{OF}+\overrightarrow{OP})$,则双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题“?x∈R,sin2x>1”的否定是(  )
A.?x∈R,sin2x≤1B.?x∉R,sin2x>1C.?x0∈R,sin2x≤1D.?x0∉R,sin2x>1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A,B的动点,且△APB面积的最大值为2$\sqrt{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知菱形EFGH的顶点E、G在椭圆C1上,顶点F、H在直线7x-7y+1=0上,求直线EG的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\frac{1}{x}+\frac{2}{y}$=1(x>0,y>0),求x+y的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数y=-x2+4x-3,当x>-1时,不等式f(x)-1≤(x+1)f(b)恒成立,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知平面上的动点P(x,y)及两定点M(-2,0)、N(2,0),直线PM、PN的斜率之积为定值$-\frac{3}{4}$,设动点P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)设Q(x0,y0)(y0>0)是曲线C上一动点,过Q作两条直线l1,l2分别交曲线C于A,B两点,直线l1与l2的斜率互为相反数.试问:直线AB的斜率与曲线C在Q点处的切线的斜率之和是否为定值,若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案