精英家教网 > 高中数学 > 题目详情
6.已知二次函数y=-x2+4x-3,当x>-1时,不等式f(x)-1≤(x+1)f(b)恒成立,求实数b的最大值.

分析 令x+1=t(t>0),则原不等式即为-(t-1)2+4(t-1)-4≤tf(b),化简可得f(b)≥6-(t+$\frac{9}{t}$)恒成立,运用基本不等式求得右边的最大值为0,再由二次不等式的解法即可得到b的最大值.

解答 解:令x+1=t(t>0),则
不等式f(x)-1≤(x+1)f(b)即为-(t-1)2+4(t-1)-4≤tf(b),
化简可得f(b)≥6-(t+$\frac{9}{t}$)恒成立,
由t+$\frac{9}{t}$≥2$\sqrt{t•\frac{9}{t}}$=6,当且仅当t=3取得等号,
即有t=3时,6-(t+$\frac{9}{t}$)取得最大值,且为6-6=0,
则有f(b)≥0,即为-b2+4b-3≥0,
解得1≤b≤3.
即有b的最大值为3.

点评 本题考查不等式的恒成立问题,注意转化为求函数的最值问题,同时考查基本不等式的运用,以及二次不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.北京某大学为第十八届四中全会招募了30名志愿者(编号分别是1,2,…30号),现从中任意选取6人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一厅的选取种数是(  )
A.25B.32C.60D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图1,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,AC∩EF=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到如图2的五棱锥P-ABFED.

(1)求证:BD⊥PA;
(2)当 PA=$\sqrt{30}$时,求三棱锥A-PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.记直线x-3y-1=0的倾斜角为α,曲线y=lnx在(2,ln2)处切线的倾斜角为β.则α-β=-arctan$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.请先阅读:在等式cos2x=2cos2x-1(x∈R)的两边求导,得(cos2x)′=(2cos2x-1)′,由求导法则,得(-sin2x)•2=4cosx•(-sinx),化简得等式:sin2x=2cosx•sinx,利用上面的想法(或其他方法),求和$\sum_{k=1}^{n}$3k-1•k${C}_{n}^{k}$=n•4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知中心在原点,焦点在坐标轴上的椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)它的离心率为$\frac{1}{2}$,一个焦点是(-1,0),过直线x=4上一点引椭圆E的两条切线,切点分别是A、B.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若在椭圆E$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的点(x0,y0)处的切线方程是$\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$=1.求证:直线AB恒过定点C,并求出定点C的坐标;
(Ⅲ)求证:|AC|+|BC|=$\frac{4}{3}$|AC|•|BC|(点C为直线AB恒过的定点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点与抛物线x2=4$\sqrt{3}$y的焦点重合,F1与F2分别是该椭圆的左右焦点,离心率e=$\frac{1}{2}$,且过椭圆右焦点F2的直线l与椭圆C交于M、N两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=-2,其中O为坐标原点,求直线l的方程;
(Ⅲ)若AB是椭圆C经过原点O的弦,且MN∥AB,判断$\frac{|AB{|}^{2}}{|MN|}$是否为定值?若是定值,请求出,若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,直线l:x-y+2=0与以右焦点F为圆心,椭圆E的长半轴长为半径的圆相切.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)是否存在直线l0,使得直线l0和椭圆E相切,切点在第一象限,且截圆F所得弦长为4?若存在,试求l0的直线方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个正方体的对角线长为3$\sqrt{3}$,则这个正方体的棱长为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案