精英家教网 > 高中数学 > 题目详情
4.北京某大学为第十八届四中全会招募了30名志愿者(编号分别是1,2,…30号),现从中任意选取6人按编号大小分成两组分配到江西厅、广电厅工作,其中三个编号较小的人在一组,三个编号较大的在另一组,那么确保6号、15号与24号同时入选并被分配到同一厅的选取种数是(  )
A.25B.32C.60D.100

分析 根据题意,分析可得要“确保6号、15号与24号同时入选并被分配到同一厅”,则除6、15、24号之外的另外三人的编号必须都大于25或都小于6号,则先分另外三人的编号必须“都大于25”或“都小于6号”这2种情况讨论选出其他三人的情况,再将选出2组进行全排列,对应江西厅、广电厅;由分步计数原理计算可得答案.

解答 解:根据题意,要“确保6号、15号与24号同时入选并被分配到同一厅”,则除6、15、24号之外的另外一组三人的编号必须都大于25或都小于6号,
则分2种情况讨论选出的情况:
①、如果另外三人的编号都大于等于25,则需要在编号为25、26、27、28、29、30的6人中,任取3人即可,有C63=20种情况,
②、如果另外三人的编号都小于6,则需要在编号为1、2、3、4、5的5人中,任取3人即可,有C53=10种情况,
选出剩下3人有20+10=30种情况,
再将选出的2组进行全排列,对应江西厅、广电厅,有A22=2种情况,
则“确保6号、15号与24号同时入选并被分配到同一厅”的选取种数为30×2=60种;
故选:C.

点评 本题考查排列组合的应用,解题的关键是分析如何“确保6号、15号与24号同时入选并被分配到同一厅”,进而确定分步、分类讨论的依据.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.甲、乙两位同学各拿出六张游戏牌,用作投骰子的奖品,两人商定:骰子朝上的面的点数为奇数时甲得1分,否则乙得1分,先积得3分者获胜得所有12张游戏牌,并结束游戏.比赛开始后,甲积2分,乙积1分,这时因意外事件中断游戏,以后他们不想再继续这场游戏,下面对这12张游戏牌的分配合理的是(  )
A.甲得9张,乙得3张B.甲得6张,乙得6张
C.甲得8张,乙得4张D.甲得10张,乙得2张

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)的定义域为D,如果存在正实数k,对于任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k型增函数”,已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x-a|-2a,若f(x)为R上的“2015型增函数”,则实数a的取值范围是a<$\frac{2015}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.边长分别为a、b的矩形,按图中所示虚线剪裁后,可将两个小矩形拼接成一个正四棱锥的底面,其余恰好拼接成该正四棱锥的4个侧面,则$\frac{b}{a}$的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:cm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如表:
甲厂:
分组[29.86,
29.90 )
[29.90,
29.94)
[29.94,
29.98)
[29.9 8,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
频数12638618292614
乙厂:
分组[29.86,
29.90)
[29.90,
29.94)
[29.94,
29.98)
[29.98,
30.02)
[30.02,
30.06)
[30.06,
30.10)
[30.10,
30.14)
频数297185159766218
(1)试分别估计两个分厂生产的零件的优质品率;
(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.
甲厂乙厂合计
优质品
非优质品
合计
附K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,
p(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设等差数列{an}的前n项和为Sn,若S3=6,S4=12,则S7=42.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了保护环境,某化工厂政府部门的支持下,进行技术改进:每天把工业废气转化为某种化工产品和符合排放要求的气体.该工厂日处理废气的能力不低于40吨但不超过70吨.经测算,该工厂处理废气的成本y(元)与处理废气量x(吨)之间的函数关系可近似地表示为:y=2x2-120x+5000,且每处理1吨工业废气可得价值为60元的某种化工产品.
(1)判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,为了保证工厂在每天生产中都不出现亏损现象,国家财政部门补贴至少每天多少元?
(2)若国家给予企业处理废气每吨70元财政补贴,当工厂处理量为多少吨时,工厂处理每吨废气平均收益最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若$\overrightarrow{OE}=\frac{1}{2}(\overrightarrow{OF}+\overrightarrow{OP})$,则双曲线的离心率为$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知二次函数y=-x2+4x-3,当x>-1时,不等式f(x)-1≤(x+1)f(b)恒成立,求实数b的最大值.

查看答案和解析>>

同步练习册答案