精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆E: (a>b>0)的离心率 ,且点 在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线l与椭圆E交于A、B两点,且线段AB的垂直平分线经过点 .求△AOB(O为坐标原点)面积的最大值.

【答案】解:(Ⅰ)由已知,e= = ,a2﹣b2=c2 , ∵点 在椭圆上,
,解得a=2,b=1.
∴椭圆方程为
(Ⅱ)设A(x1 , y1),B(x2 , y2),
∵AB的垂直平分线过点 ,∴AB的斜率k存在.
当直线AB的斜率k=0时,x1=﹣x2 , y1=y2
∴SAOB= 2|x||y|=|x|
= =1,
当且仅当x12=4﹣x12 , 取得等号,
时,(SAOBmax=1;
当直线AB的斜率k≠0时,设l:y=kx+m(m≠0).
消去y得:(1+4k2)x2+8kmx+4m2﹣4=0,
由△>0可得4k2+1>m2①,
x1+x2=﹣ ,x1x2= ,可得

∴AB的中点为
由直线的垂直关系有 ,化简得1+4k2=﹣6m②
由①②得﹣6m>m2 , 解得﹣6<m<0,
又O(0,0)到直线y=kx+m的距离为


=
∵﹣6<m<0,∴m=﹣3时,
由m=﹣3,∴1+4k2=18,解得
时,(SAOBmax=1;
综上:(SAOBmax=1.
【解析】(Ⅰ)运用离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(Ⅱ)设A(x1 , y1),B(x2 , y2),讨论直线AB的斜率为0和不为0,联立直线方程和椭圆方程,运用韦达定理和弦长公式,结合基本不等式和二次函数的最值的求法,可得面积的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l与抛物线交于点A,B两点,与x轴交于点M,直线OA,OB的斜率之积为.

(1)证明:直线AB过定点;

(2)以AB为直径的圆P交x轴于E,F两点,O为坐标原点,求|OE||OF|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的解集为,求的值;

(2)求函数上的最小值

(3)对于,使成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(0,4),且在两坐标轴上的截距之和为1.

(Ⅰ)求直线l的方程;

(Ⅱ)若直线l1与直线l平行,且l1l间的距离为2,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,建立平面直角坐标系,x轴在地平面上,y轴垂直于地平面,单位长度为1 km,某炮位于原点.已知炮弹发射后的轨迹在方程ykx (1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.则炮的最大射程为(  )

A. 20 km B. 10 km

C. 5 km D. 15 km

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:

学生序号

1

2

3

4

5

6

7

物理成绩

65

70

75

81

85

87

93

化学成绩

72

68

80

85

90

86

91

规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,已知,对于任意的,有.

(1)求数列的通项公式.

(2)若数列满足,求数列的通项公式.

(3)设,是否存在实数,当时,恒成立?若存在,求实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)在中,角所对的边分别为,已知

1)求的值;

2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆与抛物线的一个公共点,且椭圆与抛物线具有一个相同的焦点

(1)求椭圆及抛物线的方程;

(2)设过且互相垂直的两动直线与椭圆交于两点,与抛物线交于两点,求四边形面积的最小值

查看答案和解析>>

同步练习册答案