【题目】已知函数,
(1)若的解集为,求的值;
(2)求函数在上的最小值;
(3)对于,使成立,求实数的取值范围.
【答案】(1) .
(2).
(3).
【解析】
第一问将题的条件转化,得到一个关于的一元二次不等式,利用不等式解的特征,可知边界值为其对应的方程的根,应用根与系数之间的关系,确定出系数的值,第二问通过对对称轴位置的讨论,确定出函数在哪个点处取得最小值,第三问将问题转化为在相应区间上,从而求得结果.
(1)由得;整理得,
因为不等式的解集为,
所以方程的两根是,;
由根与系数的关系得 ,即;
(2)的对称轴方程为,
①当时,即 在上是单调增函数,故;
②当时,即,在上是单调减函数,在上是单调增函数,故;
③当时,即 在上是单调减函数,故;
所以
(3)因为函数在区间上为增函数,在区间上为减函数
其中,,所以函数在上的最小值为
对于使成立在上的
最小值不大于在上的最小值,
由(2)知
①
解得,所以;
②当时,
解得,所以;
③当时,
解得,所以
综上所述,的取值范围是.
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,直线的参数方程为(为参数),圆C的参数方程为(为参数),以坐标原点O为极点,轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求直线l和圆C的极坐标方程;
(Ⅱ)设直线l和圆C相交于A,B两点,求弦AB与其所对劣弧所围成的图形面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】手机给人们的生活带来便利的同时,也给青少年的成长带来不利的影响,有人沉迷于手机游戏无法自拔,严重影响了自己的学业,某学校随机抽取个班,调查各班带手机来学校的人数,所得数据的茎叶图如图所示.以组距为将数据分组成,,…,,时,所作的频率分布直方图是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,⊥底面,,,,,点为棱的中点.
(1)(理科生做)证明:;
(文科生做)证明:;
(2)(理科生做)若为棱上一点,满足,求二面角的余弦值.
(文科生做)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ,若有三个不同的实数a,b,c,使得f(a)=f(b)=f(c),则a+b+c的取值范围为( )
A.(2π,2017π)
B.(2π,2018π)
C.( , )
D.(π,2017π)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: (a>b>0)的离心率 ,且点 在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线l与椭圆E交于A、B两点,且线段AB的垂直平分线经过点 .求△AOB(O为坐标原点)面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点M到点的距离比它到轴的距离大2,记点M的轨迹为C.
(1)求轨迹C的方程;
(2)若直线与轨迹C恰有2个公共点,求实数b的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com