精英家教网 > 高中数学 > 题目详情

【题目】定义在R上的函数f(x)满足:f(2)=1,且对于任意的x∈R,都有f′(x)< ,则不等式f(log2x)> 的解集为

【答案】{x丨0<x<4}
【解析】解:设F(x)=f(x)﹣ x,求导F′(x)=f′(x)﹣ <0,则F(x)在R单调递减, 由f(log2x)> ,即f(log2x)﹣ log2x>
由f(2)﹣ ×2=
∴F(log2x)>F(2),(x>0),
则log2x<2,解得:0<x<4,
∴不等式的解集为:{x丨0<x<4},
故答案为::{x丨0<x<4}.
故答案为:{x丨0<x<4}.
构造辅助函数,求导,由题意可知F(x)=f(x)﹣ x在R单调递减,原不等式转化成F(log2x)>F(2),(x>0),根据函数的单调性即可求得不等式的解集.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2﹣a﹣lnx,其中a∈R.
(1)讨论f(x)的单调性;
(2)当x∈(1,+∞)时,xf(x)+xe1x>1恒成立,求a的取值范围.(其中,e=2.718…为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,,点满足,记点的轨迹为.

(1)求轨迹的方程;

(2)若直线过点且与轨迹交于两点.

(i)无论直线绕点怎样转动,在轴上总存在定点,使恒成立,求实数的值.

(ii)在(i)的条件下,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若的解集为,求的值;

(2)求函数上的最小值

(3)对于,使成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:
①命题:x∈(0,2),3x>x3的否定是:x∈(0,2),3x≤x3
②若f(x)=2x﹣2x , 则x∈R,f(﹣x)=﹣f(x);
③若f(x)=x+ ,则x0∈(0,+∞),f(x0)=1;
④等差数列{an}的前n项和为Sn , 若a4=3,则S7=21;
⑤在△ABC中,若A>B,则sinA>sinB.
其中真命题是 . (只填写序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点A(0,4),且在两坐标轴上的截距之和为1.

(Ⅰ)求直线l的方程;

(Ⅱ)若直线l1与直线l平行,且l1l间的距离为2,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,建立平面直角坐标系,x轴在地平面上,y轴垂直于地平面,单位长度为1 km,某炮位于原点.已知炮弹发射后的轨迹在方程ykx (1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标.则炮的最大射程为(  )

A. 20 km B. 10 km

C. 5 km D. 15 km

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,已知,对于任意的,有.

(1)求数列的通项公式.

(2)若数列满足,求数列的通项公式.

(3)设,是否存在实数,当时,恒成立?若存在,求实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

分组

频数

频率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中Mp及图中a的值;

(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.

查看答案和解析>>

同步练习册答案