精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2

(1)证明:a2=4b2
(2)若双曲线x2-y2=1的渐近线与椭圆C有四个交点,以这四个交点为顶点的四边形的面积为16,求椭圆C的方程.
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:(1)利用椭圆的离心率为
3
2
,c2=a2-b2,即可得出结论;
(2)由题意,双曲线x2-y2=1的渐近线方程为y=±x,根据以这四个交点为顶点的四边形的面积为16,可得(2,2)在椭圆上,利用e=
3
2
,即可求得椭圆方程.
解答: (1)证明:因为椭圆的离心率为
3
2
,所以e=
c
a
=
3
2
,…(1分)
c2=
3
4
a2

又因为c2=a2-b2…(2分)
所以
3
4
a2=a2-b2
,…(3分)
所以b2=
1
4
a2
,即a2=4b2,…(4分)
(2)解:双曲线的渐近线为y=±x,…(5分)
代入椭圆得
x2
a2
+
x2
b2
=1

x2
4b2
+
x2
b2
=
5x2
4b2
=1
.…(6分)
所以x2=
4
5
b2,x=±
2
5
b
y2=
4
5
b2
y=±
2
5
b
.…(7分)
则第一象限的交点坐标为(
2
5
b,
2
5
b)
.…(8分)
所以四边形的面积为S=4×
2
5
2
5
b=
16
5
b2=16
.…(10分)
所以b2=5..…(11分)
所以椭圆方程为
x2
20
+
y2
5
=1
.…(12分)
点评:本题考查双曲线的性质,考查椭圆的标准方程与性质,正确运用双曲线的性质是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,ABCD是边长为2的正方形,ED⊥ABCD,ED=1,EF∥BD,且EF=
1
2
BD.
(1)求证:BF∥平面ACE;
(2)求证:平面EAC⊥平面BDEF;
(3)求二面角B-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知极坐标系的极点在平面直角坐标系的原点O处,极轴与x轴的非负半轴重合,且长度单位相同,若圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为
x=3+t
y=4+2t
(t为参数),直线l与圆C交于A,B两点.
(1)求圆C的直角坐标方程与直线l的普通方程;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在(1+x+x2n=D
 
0
n
+D
 
1
n
x+D
 
2
n
x2+…+D
 
r
n
xr+…+D
 
2n-1
n
x2n-1+D
 
2n
n
x2n的展开式中,把D
 
0
1
,D
 
1
n
,D
 
2
n
,…,D
 
2n
n
叫做三项式系数.
(1)当n=2时,写出三项式系数D
 
0
2
,D
 
1
2
,D
 
2
2
,D
 
3
2
,D
 
4
2
的值;
(2)类比二项式系数性质C
 
m
n+1
=C
 
m-1
n
+C
 
m
n
(1≤m≤n,m∈N,n∈N),给出一个关于三项式系数D
 
m+1
n+1
(1≤m≤2n-1,m∈N,n∈N)的相似性质,并予以证明;
(3)求D
 
0
2014
C
 
0
2014
-D
 
1
2014
C
 
1
2014
+D
 
2
2014
C
 
2
2014
-D
 
3
2014
C
 
3
2014
+…+D
 
2014
2014
C
 
2014
2014
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(x+a).
(1)若0<f(1-2x)-f(x)<
1
2
,当a=1时,求x的取值范围;
(2)若定义在R上奇函数g(x)满足g(x+2)=-g(x),且当0≤x≤1时,g(x)=f(x),求g(x)在[-3,-1]上的反函数h(x);
(3)对于(2)中的g(x),若关于x的不等式g(
t-2 x
8+2 x+3
)≥1-log23在R上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:函数f(x)=
x2-4x+a2
的定义域为R;q:?m∈[-1,1],a2-5a-5≥m2恒成立;如果“p∨q”为真命题,且“p∧q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过坐标原点作曲线y=lnx的切线l,该切线l与曲线y=lnx及x轴围成图形为D.
(1)求切线l的方程.
(2)求区域D的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4sinωx•sin2
π
4
+
ωx
2
)+cos2ωx  (ω>0)的最小正周期为π.
(1)求ω的值;
(2)求f(x)在[
π
6
3
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an=(-1)n•n,其前n项和为Sn,则Sn=
 

查看答案和解析>>

同步练习册答案