精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=lnx-$\frac{(x-1)^{2}}{2}$.求函数f(x)的单调递增区间.

分析 求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可.

解答 解:f′(x)=$\frac{1}{x}$-x+1=$\frac{{-x}^{2}+x+1}{x}$,x∈(0,+∞),
由f′(x)>0,得$\left\{\begin{array}{l}{x>0}\\{{-x}^{2}+x+1>0}\end{array}\right.$,
解得:0<x<$\frac{1+\sqrt{5}}{2}$,
故f(x)的单调递增区间是(0,$\frac{1+\sqrt{5}}{2}$).

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.圆x2+y2-2x-2y+1=0上的点到直线x-y=2的距离最大值是(  )
A.2+$\sqrt{2}$B.1+$\sqrt{2}$C.$\sqrt{2}$-1D.1+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2;则棱锥VO-ABC:VO-SAB=(  )
A.1:1B.1:2C.2:1D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知实数x,y满足约束条件$\left\{\begin{array}{l}y≥0\\ x-y≥0\\ 2x-y-2≥0\end{array}\right.$,则使|m-1|>$\frac{y-1}{x+1}$恒成立的m的取值范围是(  )
A.[0,2]B.(-∞,0]∪[2,+∞)C.[2,+∞)D.[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x、y满足条件:$\left\{\begin{array}{l}x-y-1≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$,则$\frac{y}{x}$的最小值为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若直线l经过点A(2,-3)和B(-1,3),则直线l的斜率是(  )
A.-2B.$-\frac{1}{2}$C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)=ax3+bsinx+100tanx+1,且f(1)=5,f(-1)的值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A、B、C所对应的边分别为a、b、c,则“A≤B”是sinA≤sinB的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\frac{x-1}{x-a}$在区间[3,+∞)上是减函数,则a的取值范围是(  )
A.[1,3)B.(1,3)C.(1,3]D.[1,3]

查看答案和解析>>

同步练习册答案