精英家教网 > 高中数学 > 题目详情
11.设F1(-c,0),F2(c,0)是椭圆C1:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)与双曲线C2有公共焦点F1、F2,(F1、F2分别为左、右焦点),它们在第一象限交于点M,离心率分别为e1和e2,线段MF1的垂直平分线过F2,则$\frac{{{e_2}-{e_1}}}{{{e_1}{e_2}}}$的值为(  )
A.$2\sqrt{2}$B.$3\sqrt{2}$C.3D.2

分析 设双曲线C2的标准方程为:$\frac{{x}^{2}}{{a}_{2}^{2}}-\frac{{y}^{2}}{{b}_{2}^{2}}$=1(a2,b2>0).a1=a.由题意可知:F1F2=F2M=2c,由定义可得:F1M+F2M=2a1,F1M-F2M=2a2,可得:a1-a2=2c,于是$\frac{{a}_{1}}{c}-\frac{{a}_{2}}{c}$=2,即可得出.

解答 解:设双曲线C2的标准方程为:$\frac{{x}^{2}}{{a}_{2}^{2}}-\frac{{y}^{2}}{{b}_{2}^{2}}$=1(a2,b2>0).a1=a.
由题意可知:F1F2=F2M=2c,
又∵F1M+F2M=2a1,F1M-F2M=2a2
∴F1M+2c=2a1,F1M-2c=2a2
两式相减,可得:a1-a2=2c,
∴$\frac{{a}_{1}}{c}-\frac{{a}_{2}}{c}$=2,∴$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2.

点评 本题考查了椭圆与双曲线的定义标准方程及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.若关于x的方程lnx+2=(a+1)x无解,则数实a的取值范围为(e-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=$\frac{\sqrt{2}}{2}$AD.
(1)求证:平面PAB⊥平面PDC
(2)在线段AB上是否存在一点G,使得二面角C-PD-G的余弦值为$\frac{1}{3}$.若存在,求$\frac{AG}{AB}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)=$\left\{\begin{array}{l}{0,x>0}\\{-1,x=0}\\{2x-3,x<0}\end{array}\right.$,则f[f(0)]=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},命题p:x∈A为x∈B的必要条件;
命题 q:函数f(x)=lg(mx2-mx+3)的定义域为R.若p∧q为假,p∨q为真,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式组$\left\{\begin{array}{l}x>m\\ x<4\end{array}\right.$的整数解有4个,则m的取值范围是(  )
A.-1≤m<0B.-1<m≤0C.-1≤m≤0D.-1<m<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:($\frac{1}{3}$)-1+|1-$\sqrt{3}$|-2sin60°+(π-2016)0-$\root{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)是定义在R上的奇函数,但当x>0时,f(x)=$\frac{1}{x+1}$-log2(x+1),则满足4f(x+1)>7的实数x的取值范围是(  )
A.(2,+∞)B.(-∞,-1)∪(3,+∞)C.(-4,2)D.(-∞,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直线y=mx+1与曲线x=2+$\sqrt{1-{y}^{2}}$的图象始终有交点,则m的取值范围是(  )
A.(-1,0)B.[-1,0]C.(-1,-$\frac{1}{3}$)D.[-1,-$\frac{1}{3}$]

查看答案和解析>>

同步练习册答案