精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-3x2+a(6-a)x+c.
(1)当c=19时,解关于a的不等式f(1)>0;
(2)若关于x的不等式f(x)>0的解集是(-1,3),求实数a,c的值.
考点:一元二次不等式的解法,二次函数的性质
专题:不等式的解法及应用
分析:(1)c=19时,f(1)=-3+6a-a2+19=-a2+6a+16>0,化为a2-6a-16<0,解得即可;
(2)利用一元二次不等式的解集与相应的一元二次方程的实数根的关系即可得出.
解答: 解:(1)c=19时,f(1)=-3+6a-a2+19=-a2+6a+16>0,
化为a2-6a-16<0,解得-2<a<8.
∴不等式的解集为(-2,8).
(2)由已知有-1,3是关于x的方程3x2-a(6-a)x-c=0的两个根,
△=a2(6-a)2-4×3×(-c)>0
-1+3=
a(6-a)
3
-1×3=
-c
3

解得
a=3±
3
c=9
点评:本题考查了一元二次不等式的解法、一元二次不等式的解集与相应的一元二次方程的实数根的关系,考查了计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,cosx),
b
=(sin(x-
π
6
),sinx),函数f(x)=2
a
b
,g(x)=f(
πx
4
).
(1)求f(x)在[
π
2
,π]上的最值,并求出相应的x的值;
(2)计算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,讨论g(x)在[t,t+2]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|-4<x<2},B={x|x<-5或x>1},C={x|m-1<x<m+1},m∈R.
(1)求A∩B;
(2)若A∩B⊆C,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

现代人普遍认为拓展训练是一种挑战极限、完善人格的训练.某大学生拓展训练中心着眼于大学生的实际情况,精心地设计了三个相互独立的挑战极限项目,并设置如下计分办法:
项目
挑战成功得分103060
挑战失败得分000
据调查,大学生挑战甲项目的成功概率为
4
5
,挑战乙项目的成功概率为
3
4
,挑战丙项目的成功概率为
1
2

(Ⅰ)求某同学三个项目全部挑战成功的概率;
(Ⅱ)记该同学挑战三个项目后所得分数为X,求X的分布列并求EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

某食品企业一个月内别消费者投诉的次数用ξ表示,据统计,随机变量ξ的概率分布如下:
ξ0123
p0.10.32aa
(1)求a的值;
(2)求ξ的数学期望和方差;
(3)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在y轴上,若其离心率是
1
2
,焦距是8,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC=A1B1C1中,∠ACB=90°,E,F,D分别是AA1,AC,BB1的中点,且CD⊥C1D.
(Ⅰ)求证:CD∥平面BEF;
(Ⅱ)求证:平面BEF⊥平面A1C1D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+3,g(x)=3x-k(k∈R).
(1)如果f(g(x))=g(f(x))恒成立,求k值,并求函数h(x)=f(x)+
g(x)
的值域;
(2)若k=-4,实数a满足f(a2)=g(a2-a),求a
3
2
-a-
3
2
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
=(1,2),
b
=(-3,1)则2
a
-
b
=
 

查看答案和解析>>

同步练习册答案