精英家教网 > 高中数学 > 题目详情
7.设Tn为等比数列{an}的前n项之积,且a1=-6,${a_4}=-\frac{3}{4}$,则公比q=$\frac{1}{2}$,当Tn最大时,n的值为4.

分析 a1=-6,${a_4}=-\frac{3}{4}$,可得:$-\frac{3}{4}$=-6q3,解得q=$\frac{1}{2}$.可得an.于是Tn=(-6)n$(\frac{1}{2})^{\frac{n(n-1)}{2}}$.只考虑n为偶数时,$\frac{{T}_{2n+2}}{{T}_{2n}}$与1比较即可得出.

解答 解:∵a1=-6,${a_4}=-\frac{3}{4}$,
∴$-\frac{3}{4}$=-6q3
解得q=$\frac{1}{2}$.
∴an=$-6×(\frac{1}{2})^{n-1}$.
∴Tn=(-6)n×$(\frac{1}{2})^{0+1+2+…+(n-1)}$
=(-6)n$(\frac{1}{2})^{\frac{n(n-1)}{2}}$.
T2n=36n$(\frac{1}{2})^{n(2n-1)}$.
$\frac{{T}_{2n+2}}{{T}_{2n}}$=$\frac{3{6}^{n+1}(\frac{1}{2})^{(n+1)(2n+1)}}{3{6}^{n}(\frac{1}{2})^{n(2n-1)}}$=36•$(\frac{1}{2})^{4n+1}$.
n=1时,$\frac{{T}_{4}}{{T}_{2}}$=$\frac{9}{8}$$\frac{36}{32}$>1;n≥2时,$\frac{{T}_{2n+2}}{{T}_{2n}}$<1.
∴T2<T4>T6>T8>….
则公比q=$\frac{1}{2}$,当Tn最大时,n的值为4.
故答案分别为:$\frac{1}{2}$;4.

点评 本题考查了等差数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.tan70°cos10°+$\sqrt{3}$sin10°tan70°-2sin50°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,圆O与离心率为$\frac{\sqrt{3}}{2}$的椭圆T:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个切点为M(2,0),O为坐标原点.
(1)求椭圆T与圆O的方程;
(2)过点M引两条互相垂直的直线l1,l2与两曲线分别交于点A,C与点B,D(均不重合)
①若$\overrightarrow{MB}$•$\overrightarrow{MD}$=3$\overrightarrow{MA}$$•\overrightarrow{MC}$,求l1与l2的方程;
②若AB与CD相交于点P,求证:点P在定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,四棱锥P-ABCD中,ABCD是正方形,侧棱PA⊥底面ABCD,PA=AB,M、N分别是PC、PD的中点,则异面直线BM与CN所成的角大小为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.arccos$\frac{\sqrt{2}}{3}$D.π-arccos$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设不等式组$\left\{\begin{array}{l}0≤x≤2\\ 0≤y≤2\end{array}\right.$表示的平面区域为D,在区域D内随机取一点M,则点M落在圆(x-1)2+y2=1内的概率为(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知acosB-(2c-b)cosA=0.
(Ⅰ)求角A的大小;
(Ⅱ)若a=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{kx+1,}&{x≤0}\\{lnx,}&{x>0}\end{array}\right.$,则方程f(f(x))+2=0有4个不同的实数解的充要条件是(  )
A.k<0B.k>0C.-1<k<1D.-1≤k≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$=(-3cosα,2)与向量$\overrightarrow{b}$=(3,-4sinα)平行,则锐角α等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对两个具有相关关系的变量进行研究时,首先要画出这两个变量的(  )
A.结构图B.散点图C.等高条形图D.残差图

查看答案和解析>>

同步练习册答案