精英家教网 > 高中数学 > 题目详情
1.把正整数按下表的规律排列,则第n行、第n+1列的数应为n(n+1).

分析 观察如图的正整数排列可得到,第一列的数分别是1,4,9,16,25,…可得出一个规律:第一列每行的数都等于行数的2次方.且每行的数的个数与对应列的数的个数相等.

解答 解:由第一列数1,4,9,16,25,…得到:
1=12
4=22
9=32
16=42
25=52
…所以第n行第1列的数为:n2
则:第n行第n+1列的数为:n2+n=n(n+1),
故答案为:n(n+1).

点评 此题考查观察分析归纳总结的能力,解答此题的关键是找出两个规律,即第一列每行的数都等于行数的2次方和每行的数个数与对应列的数的个数相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)的定义域为(-∞,0)∪(0,+∞),f(-x)+f(x)=0,且x>0时,f(x)=(1-x)ex,则不等式xf(x)>0的解集为(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.一个几何体的三视图如图所示,则该几何体的体积为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在正六边形ABCDEF中,设$\overrightarrow{AF}$=$\overrightarrow{a}$,$\overrightarrow{AB}$=$\overrightarrow{b}$,则$\overrightarrow{AE}$=(  )
A.2$\overrightarrow{a}$$+\overrightarrow{b}$B.2$\overrightarrow{a}$-$\overrightarrow{b}$C.-2$\overrightarrow{a}$$+\overrightarrow{b}$D.-2$\overrightarrow{a}$$-\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某中学举行英语演讲比赛,如图是七位评委为某位学生打出分数的茎叶图,去掉一个最高分和一个最低分,所剩数据的中位数和方差分别为(  )
A.84,4.84B.84,1.6C.85,4D.86,1.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,
(1)求|$\overrightarrow{a}$-$\overrightarrow{b}$|与|2$\overrightarrow{a}$-$\overrightarrow{b}$|的值;
(2)求$\overrightarrow{b}$-$\overrightarrow{a}$与2$\overrightarrow{a}$-$\overrightarrow{b}$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.与命题“若a∉M,则b∈M”等价的命题是(  )
A.若a∈M,则b∉MB.若b∈M,则a∉MC.若b∉M,则a∉MD.若b∉M,则a∈M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数),以坐标原点O为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=2cosθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设点P(m,0),若直线l与曲线C交于A、B两点,且|PA|•|PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-a|.
(1)若不等式f(x)≤9的解集为{x|-2≤x≤16},求实数a的值;
(2)在(1)的条件下,若不等式f(x)+f(x-1)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案