精英家教网 > 高中数学 > 题目详情
4.已知矩形ABCD中,AB=4$\sqrt{3}$,BC=4,M,N分别是边BC,CD上的点,且MN=2,则$\overrightarrow{AM}•\overrightarrow{AN}$的最小值是(  )
A.12B.24C.36D.48

分析 由题意画出图形,建立适当的平面直角坐标系,设出M,N的坐标,结合MN=2,得$(c-4\sqrt{3})^{2}+(b-4)^{2}=4$,令c=$4\sqrt{3}+2cosα$,b=4+2sinα,把$\overrightarrow{AM}•\overrightarrow{AN}$转化为含有α的三角函数求得最值.

解答 解:如图,分别以AB,AD所在直线为x,y轴建立平面直角坐标系,
则A(0,0),B($4\sqrt{3}$,0),D(0,4),C($4\sqrt{3},4$),
设M($4\sqrt{3},b$),N(c,4),
则$\overrightarrow{MN}=(c-4\sqrt{3},4-b)$,
由MN=2,得$(c-4\sqrt{3})^{2}+(b-4)^{2}=4$,
令c=$4\sqrt{3}+2cosα$,b=4+2sinα,
则$\overrightarrow{AM}•\overrightarrow{AN}$=$4\sqrt{3}c+4b=48+8\sqrt{3}cosα+16+8sinα$
=$64+16sin(α+\frac{π}{3})$.
∴当sin($α+\frac{π}{3}$)取最小值-1时,$\overrightarrow{AM}•\overrightarrow{AN}$有最小值是48.
故选:D.

点评 本题考查平面向量的数量积运算,考查数学转化思想方法,训练了三角函数最值的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x(a+lnx)(a∈R)
(Ⅰ)当a=0时,求f(x)的极值.
(Ⅱ)若曲线y=f(x)在点(e,f(e))处切线的斜率为3,且2f(x)-(b+1)x+b>0对任意x>1都成立,求整数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知a=log0.32,b=log20.3,c=0.20.3,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了引导学生树立正确的消费观,抽取了某校部分学生的每周消费情况,绘制成频率分布直方图如图,则图中实数a的值为(  )
A.0.04B.0.05C.0.06D.0.07

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow{a}$=(sinx,-$\frac{1}{2}$),$\overrightarrow{b}$=(cosx,cos(2x+$\frac{π}{6}$)),函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$
(1)求函数f(x)的单调递增区间;
(2)若函数f(x)在y轴右侧的极大值点从小到大构成数列{an},试求数列{$\frac{{π}^{2}}{{a}_{n}{a}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列选项中为函数f(x)=cos(2x-$\frac{π}{6}$)sin2x-$\frac{1}{4}$的对称中心为(  )
A.$(\frac{π}{12},0)$B.$(\frac{π}{3},-\frac{1}{4})$C.$(\frac{π}{3},0)$D.$(\frac{7π}{24},0)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,角A,B,C所对的边分别是a、b、c,已知b=2,且cos2B+cosB+cos(A-C)=1,当a+2c取得最小值时,最大边所对角的余弦值是-$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知复数z=$\frac{2i}{{1+\sqrt{3}\;i}}$(i为虚数单位),$\overline{z}$表示z的共轭复数,则z•$\overline{z}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.将5封信投入3个邮箱,则下列事件中概率为1的是(  )
A.只有一个信箱有信B.至多有1个信箱有信
C.每个信箱都有信D.至少有一个信箱有信

查看答案和解析>>

同步练习册答案