| A. | 12 | B. | 24 | C. | 36 | D. | 48 |
分析 由题意画出图形,建立适当的平面直角坐标系,设出M,N的坐标,结合MN=2,得$(c-4\sqrt{3})^{2}+(b-4)^{2}=4$,令c=$4\sqrt{3}+2cosα$,b=4+2sinα,把$\overrightarrow{AM}•\overrightarrow{AN}$转化为含有α的三角函数求得最值.
解答
解:如图,分别以AB,AD所在直线为x,y轴建立平面直角坐标系,
则A(0,0),B($4\sqrt{3}$,0),D(0,4),C($4\sqrt{3},4$),
设M($4\sqrt{3},b$),N(c,4),
则$\overrightarrow{MN}=(c-4\sqrt{3},4-b)$,
由MN=2,得$(c-4\sqrt{3})^{2}+(b-4)^{2}=4$,
令c=$4\sqrt{3}+2cosα$,b=4+2sinα,
则$\overrightarrow{AM}•\overrightarrow{AN}$=$4\sqrt{3}c+4b=48+8\sqrt{3}cosα+16+8sinα$
=$64+16sin(α+\frac{π}{3})$.
∴当sin($α+\frac{π}{3}$)取最小值-1时,$\overrightarrow{AM}•\overrightarrow{AN}$有最小值是48.
故选:D.
点评 本题考查平面向量的数量积运算,考查数学转化思想方法,训练了三角函数最值的求法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<b<a | B. | c<a<b | C. | a<b<c | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.04 | B. | 0.05 | C. | 0.06 | D. | 0.07 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{π}{12},0)$ | B. | $(\frac{π}{3},-\frac{1}{4})$ | C. | $(\frac{π}{3},0)$ | D. | $(\frac{7π}{24},0)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com