精英家教网 > 高中数学 > 题目详情
3.设集合P={x|y=log2x},Q=|y|y=x3},则P∩Q等于(  )
A.RB.[0,+∞)C.(0,+∞)D.[1,+∞)

分析 求出集合的等价条件,根据集合的基本运算进行求解即可.

解答 解:P={x|y=log2x}=(0,+∞),
Q=|y|y=x3}=(-∞,+∞),
则P∩Q=(0,+∞),
故选:C

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求垂直于直线2x-6y+1=0并且与曲线f(x)=x3+3x2-5相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知一个四棱锥的底面由不等式组$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x+y≤2}\\{y-x-4≤0}\end{array}\right.$确定的平面区域构成,其正视图为如图所示的直角三角形(其中虚线长度为$\sqrt{5}$),则此四棱锥的体积是(  )
A.14B.7$\sqrt{5}$C.$\frac{14}{3}$D.$\frac{2\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数f(x)=$\frac{x}{\sqrt{1+{x}^{2}}}$,f(2)(x)=f[f(x)],f(3)(x)=f(f(f(x))),则f(99)(1)=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.有一天猎手带着他的两头猎犬跟踪某动物的踪迹,他们来达到一个三岔口,现在需要从两个方向中选择一个追踪方向,猎手知道两条猎犬会相互独立地以概率p找到正确的方向,因此他让两条猎犬选择它们的方向,如果两头猎犬选择同一方向,他就沿着这个方向走,若两条猎犬选择不同的方向,他就随机地选择一个方向走,这个策略是否比只让一个猎犬选择方向优越?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知c>0,且c≠1.设命题p:函数f(x)=logcx为减函数,命题q:当x∈[$\frac{1}{2}$,2]时,函数g(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.如果p或q为真命题,p且q为假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=x${\;}^{-\frac{1}{2}}$,的定义域为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$,x∈R)的图象的一部分如图所示.
(1)求函数f(x)的解析式;
(2)求函数y=f(x)+f(x+2)的最大值与最小值及相应的x的值,并求其单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.用数学归纳法证明:“两两相交且不共点的n条直线把平面分为f(n)部分,则f(n)=1+$\frac{n(n+1)}{2}$.”在证明第二步归纳递推的过程中,用到f(k+1)=f(k)+(  )
A.k-1B.kC.k+1D.$\frac{k(k+1)}{2}$

查看答案和解析>>

同步练习册答案