精英家教网 > 高中数学 > 题目详情
14.已知一个四棱锥的底面由不等式组$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x+y≤2}\\{y-x-4≤0}\end{array}\right.$确定的平面区域构成,其正视图为如图所示的直角三角形(其中虚线长度为$\sqrt{5}$),则此四棱锥的体积是(  )
A.14B.7$\sqrt{5}$C.$\frac{14}{3}$D.$\frac{2\sqrt{5}}{3}$

分析 确定四棱锥的底面面积,利用锥体的体积公式,求出四棱锥的体积.

解答 解:由题意,四棱锥的底面由不等式组$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{x+y≤2}\\{y-x-4≤0}\end{array}\right.$确定的平面区域构成,其面积为$\frac{1}{2}×4×4$-$\frac{1}{2}×2×1$=7,
∵正视图为如图所示的直角三角形(其中虚线长度为$\sqrt{5}$),
∴此四棱锥的体积是$\frac{1}{3}×7×\sqrt{5}$=$\frac{7\sqrt{5}}{3}$,
故选:D.

点评 本题考查四棱锥的体积,考查线性规划知识,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x+2.
(1)求y=f(x)的表达式;
(2)求y=f(x)的图象与两坐标轴所围成图形的面积;
(3)若直线x=-t(0<t<1把y=f(x)的图象与两坐标轴所围成图形的面积二等分,求t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=sin(2x+$\frac{π}{3}$),x∈[0,2π]的单调减区间是[$\frac{π}{12}$,$\frac{7π}{12}$]和[$\frac{13π}{12}$,$\frac{19π}{12}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若AB=2,AC2-2BC2=1,则此三角形面积的最大值为$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.cos23°sin53°-sin23°cos53°=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}是各项均不为0的等差数列,Sn为其前n项和,且满足an2=S2n-1(n∈N+).若不等式$\frac{λ}{{{a_{n+1}}}}$≤$\frac{{n+8•{{(-1)}^n}}}{2n}$对任意的n∈N+恒成立,则实数λ的最大值为$-\frac{21}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)=-x2-ax+1,g(x)=$\frac{(ax^2+x+a)}{{x}^{2}}$,
(1)若f(x)+b=0在[1,2]上有两个不等实根,求g(1)+b的取值范围;
(2)若存在x1∈[1,2],使得对任意的x2∈[$\frac{1}{2}$,1],都有f(x1)≥g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设集合P={x|y=log2x},Q=|y|y=x3},则P∩Q等于(  )
A.RB.[0,+∞)C.(0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数y=tanωx(ω>0)在(-$\frac{π}{6}$,$\frac{π}{4}$)上单调递增,则ω的最大值为2.

查看答案和解析>>

同步练习册答案