精英家教网 > 高中数学 > 题目详情
将自然数1,2,3,…,n,…按第k组含k个数的规则分组:(1),(2,3),(4,5,6),…那么2012所在的组是(  )
A、第64组B、第63组
C、第62组D、第61组
考点:归纳推理
专题:推理和证明
分析:注意观察,每组数的最后一个数是自然数的和.算得:前62项和为=1953,前63项和为=2016,故2012在第63组内.
解答: 解:注意观察,每组数的最后一个数是自然数的和.
1在第1组末,是1的和;
3在第2组末,是1+2的和;
6在第3组末,是1+2+3的和;

自然数前n项和求和公式为:S=
n(n+1)
2

算得:前62项和为=1953,前63项和为=2016,
所以:
第62组末,是1+2+3+…+62的和,最后一项为1953;
第63组末,是1+2+3+…+63的和,最后一项为2016;
故2012在第63组内.
故选:B
点评:本题考查数列的应用,归纳推理,解题时要认真审题,仔细求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2,
a
b
的夹角为60°,
c
a
+
b
d
=
a
+2
b
的夹角为锐角,求λ的取值范围
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为内角A,B,C所对的边,b=c,且满足
sinB
sinA
=
1-cosB
cosA
.若点O是△ABC外一点,∠AOB=θ(0<θ<π),OA=2OB=2,平面四边形OACB面积的最大值是(  )
A、
8+5
3
4
B、
4+5
3
4
C、3
D、
4+5
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax2+x,x≥0
x-ax2x<0
,设关于x的不等式f(x+a)<f(x)的解集为M,若[-
1
2
1
2
]⊆M,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)在定义域(-1,1)上是减函数,其图象关于原点对称,且f(1-a)+f(1-2a)<0,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在(0,4)上的减函数,且f(a2-a)>f(2),则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

从18人中随机抽取4人参加一次问卷调查,抽到甲同学而未抽到乙同学的可能抽取情况有
 
种.
(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}满足a1=0且an+1=an+
1
2n
+1,数列{bn}的前n项和Sn=2-bn+
n(n+3)
2
,其中n∈N*
(1)求数列{an}的通项公式;
(2)求证:{bn-n}是等比数列,并求{bn}的通项公式;
(3)是否存在m∈N,使不等式a12+a22+…+an2>b12+b22+…+bn2-m对任意n∈N*都成立?若存在,求出m的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题“函数f(x)=log2(x2+ax+1)定义域为R”是假命题,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案