| A. | [2,10] | B. | [$\sqrt{5}$,$\sqrt{13}$] | C. | [1,5] | D. | [2,$\sqrt{13}$] |
分析 先求出λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$的坐标,结合λ∈[-1,2],μ∈[2,3],求得|λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$|=$\sqrt{{λ}^{2}{+μ}^{2}}$ 的最值.
解答 解:∵点A(1,1),B(2,1),C(1,2),若λ∈[-1,2],μ∈[2,3],
∴λ$\overrightarrow{AB}$=λ(1,0)=(λ,0),μ$\overrightarrow{AC}$=μ(0,1)=(0,μ),
∴λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$=(λ,μ),
则|λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$|=$\sqrt{{λ}^{2}{+μ}^{2}}$ 的最小值为2,最大值为$\sqrt{4+9}$=$\sqrt{13}$,
故选:D.
点评 本题主要考查两个向量坐标形式的运算,求向量的模,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | P(X≥2) | B. | P(X≥4) | C. | P(0≤X≤4) | D. | 1-P(X≥4) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{3}$,1)∪(1,3] | B. | [0,$\frac{1}{3}$)∪(1,3] | C. | (0,$\frac{1}{3}$] | D. | [1,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.84 | B. | 0.68 | C. | 0.32 | D. | 0.16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com