分析 (1)由A1C1∥AC,能证明A1C1∥截面AB1C.
(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能证明点A1到截面AB1C的距离,
(3)求出$\overrightarrow{AE}$,$\overrightarrow{B{C}_{1}}$,利用向量法能求出异面直线AE与BC1所成角的大小.
解答
证明:(1)∵在直棱柱ABC-A1B1C1中,A1C1∥AC,
A1C1?截面AB1C,AC?截面AB1C,
∴A1C1∥截面AB1C.
解:(2)以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,
∵∠BAC=90°,AB=BB1=1,直线B1C与底面ABC成30°角,
∴B1C=2,BC=$\sqrt{3}$,AC=$\sqrt{2}$,
∴A1(0,0,1),A(0,0,0),B1(1,0,1),C(0,$\sqrt{2}$,0),
$\overrightarrow{A{A}_{1}}$=(0,0,1),$\overrightarrow{A{B}_{1}}$=(1,0,1),$\overrightarrow{AC}$=(0,$\sqrt{2}$,0),
设截面AB1C的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=0}\\{\overrightarrow{n}•\overrightarrow{AC}=0}\end{array}\right.$,即$\left\{\begin{array}{l}{x+z=0}\\{\sqrt{2}y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,0,-1),
∴点A1到截面AB1C的距离:
d=$\frac{|\overrightarrow{A{A}_{1}}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{|1|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$.
(3)E(0,$\sqrt{2}$,$\frac{1}{2}$),$\overrightarrow{AE}$=(0,$\sqrt{2}$,$\frac{1}{2}$),C1(0,$\sqrt{2},1$),B(1,0,0),
$\overrightarrow{B{C}_{1}}$=(-1,$\sqrt{2}$,1),
设异面直线AE与BC1所成角的大小为θ,
cosθ=$\frac{|\overrightarrow{AE}•\overrightarrow{B{C}_{1}}|}{|\overrightarrow{AE}|•|\overrightarrow{B{C}_{1}}|}$=$\frac{2+\frac{1}{2}}{\sqrt{2+\frac{1}{2}}•\sqrt{4}}$=$\frac{\sqrt{10}}{4}$
∴异面直线AE与BC1所成角的大小为$\frac{\sqrt{10}}{4}$.
点评 本题考查线面平行的证明,考查点到平面的距离的求法,考查异面直线所成角的大小的求法,是中档题,解时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{100}{101}$ | B. | $\frac{99}{101}$ | C. | $\frac{99}{100}$ | D. | $\frac{101}{100}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (1,2] | C. | (1,$\sqrt{5}$) | D. | (1,$\sqrt{5}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com