分析 (1)a+b+c=1,且a,b,c是正数,变形2($\frac{2}{a+b}$+$\frac{2}{b+c}$+$\frac{2}{c+a}$)=(a+b+b+c+c+a)•($\frac{2}{a+b}$+$\frac{2}{b+c}$+$\frac{2}{c+a}$)=6+2$(\frac{a+b}{b+c}+\frac{b+c}{a+b})$+2$(\frac{c+a}{a+b}+\frac{a+b}{c+a})$+2$(\frac{c+a}{b+c}+\frac{b+c}{c+a})$,再利用基本不等式的性质即可得出.
(2)由a+b+c=1,可得(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤3(a2+b2+c2),化简即可得出.
解答 (1)证:∵a+b+c=1,且a,b,c是正数,
∴2($\frac{2}{a+b}$+$\frac{2}{b+c}$+$\frac{2}{c+a}$)=(a+b+b+c+c+a)•($\frac{2}{a+b}$+$\frac{2}{b+c}$+$\frac{2}{c+a}$)
=6+2$(\frac{a+b}{b+c}+\frac{b+c}{a+b})$+2$(\frac{c+a}{a+b}+\frac{a+b}{c+a})$+2$(\frac{c+a}{b+c}+\frac{b+c}{c+a})$≥6+2×2+2×2+2×2=18,
∴$\frac{2}{a+b}$+$\frac{2}{b+c}$+$\frac{2}{c+a}$≥9.(当且仅当a=b=c=$\frac{1}{3}$时取等号).…(5分)
(2)解:∵a+b+c=1,
∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc≤3(a2+b2+c2),
∴a2+b2+c2$≥\frac{1}{3}$,(当且仅当a=b=c=$\frac{1}{3}$时取等号),
由|x-2|$≤\frac{1}{3}$,可解得x的取值范围是$\{x|\frac{5}{3}≤x≤\frac{7}{3}\}$.…(10分)
点评 本题考查了基本不等式的性质及其应用,考查了转化能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {a|a≤0} | B. | {a|0<a≤2015} | C. | {a|a≥2015} | D. | {a|0<a<2015} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “p或q”为真,“非p”为假 | B. | “p且q”为假,“非q”为真 | ||
| C. | “p且q”为假,“非p”为假 | D. | “p且q”为真,“p或q”为真 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)在[a,b]上可导 | |
| B. | ${∫}_{a}^{x}$f(t)dt为f(x)在[a,b]上的一个原函数: | |
| C. | ${∫}_{x}^{b}$f(t)dt为f(x)在[a,b]上的一个原函数 | |
| D. | f(x)在[a,b]上至少有一个零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com