精英家教网 > 高中数学 > 题目详情
2.设集合A={x|0<x<2015},B={x|x<a}.若A⊆B,则实数a的取值范围是(  )
A.{a|a≤0}B.{a|0<a≤2015}C.{a|a≥2015}D.{a|0<a<2015}

分析 根据已知中集合A,B,结合集合包含关系的定义,可得答案.

解答 解:∵集合A={x|0<x<2015},B={x|x<a}.
若A⊆B,则a≥2015,
故实数a的取值范围是{a|a≥2015},
故选:C.

点评 本题考查的知识点是集合的包含关系的判断与应用,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知角α∈[-30°,120°];
(1)写出所有与α终边相同的角β的集合A;并在直角坐标系中,用阴影部分表示集合A中角终边所在区域;
(2)在(1)条件下,若 tanα=$\frac{4}{3}$,α∈A,求sinα,cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设直线l的方程为(a-1)x+3y+3-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线C1的参数方程为:$\left\{\begin{array}{l}x=-1+cost\\ y=3+sint\end{array}\right.$(t为参数),C2:$\left\{\begin{array}{l}x=6cosθ\\ y=2sinθ\end{array}\right.$(θ为参数)
(1)求C1,C2的普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线C3$\left\{\begin{array}{l}x=3\sqrt{3}+\sqrt{3}t\\ y=-3-t\end{array}\right.$(t为参数)距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某工厂制作如图所示的一种标识,在半径为R的圆内做一个关于圆心对称的“工”字图形,“工”字图形由横、竖、横三个等宽的矩形组成,两个横距形全等且成是竖矩形长的$\sqrt{3}$倍,设O为圆心,∠AOB=2α,“工”字图形的面积记为S.
(1)将S表示为α的函数;
(2)为了突出“工”字图形,设计时应使S尽可能大,则当α为何值时,S最大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.对于函数f(x)=asinx+bx3+c(其中,a,b∈R,c∈Z),选取a,b,c的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是(  )
A.4和6B.3和2C.2和4D.3和5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线y2=2px(p>0)的焦点为F,A(x1,y1),B(x2,y2)是过F的直线与抛物线的两个交点,求证:
(1)${y_1}{y_2}=-{p^2},{x_1}{x_2}=\frac{p^2}{4}$;
(2)$\frac{1}{|AF|}+\frac{1}{|BF|}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a+b+c=1,且a,b,c是正数,
(1)求证:$\frac{2}{a+b}$+$\frac{2}{b+c}$+$\frac{2}{c+a}$≥9;
(2)若不等式|x-2|≤a2+b2+c2对一切满足题设条件的正实数a,b,c恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和为Sn,a8=8,S8=36,则数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前100项和为(  )
A.$\frac{100}{101}$B.$\frac{99}{101}$C.$\frac{99}{100}$D.$\frac{101}{100}$

查看答案和解析>>

同步练习册答案