精英家教网 > 高中数学 > 题目详情
13.设直线l的方程为(a-1)x+3y+3-a=0(a∈R).
(1)若l在两坐标轴上的截距相等,求l的方程;
(2)若l不经过第二象限,求实数a的取值范围.

分析 将直线l的方程化为斜截式为$y=-\frac{a-1}{3}x+\frac{a-3}{3}$.
(1)对截距分类讨论即可得出.
(2)l不经过第二象限,可得$\left\{\begin{array}{l}-\frac{a-1}{3}≥0\\ \frac{a-3}{3}≤0\end{array}\right.$,解出即可得出.

解答 解:将直线l的方程化为斜截式为$y=-\frac{a-1}{3}x+\frac{a-3}{3}$…(2分)
(1)①当直线过原点时,该直线在x轴和y轴上的截距为零,当然相等.
∴当$\frac{a-3}{3}$即a=3时,满足条件,此时l方程为2x+3y=0.…(4分)
②当斜率为-1,直线在两坐标轴上的截距也相等.
∴当$-\frac{a-1}{3}=-1$即a=4时,满足条件,此时l方程为3x+3y-1=0.…(6分)
综上所述,若l在两坐标轴上的截距相等,l的方程为2x+3y=0或3x+3y-1=0.…(7分)
(2)l不经过第二象限
∴$\left\{\begin{array}{l}-\frac{a-1}{3}≥0\\ \frac{a-3}{3}≤0\end{array}\right.$,…(10分)
解得a≤1.
∴a的取值范围为(-∞,1].…(12分)

点评 本题考查了直线方程及其应用、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.己知抛物线C1:x2=4y的焦点F,过点F的直线L与C1相交于AB两点,与C2:$\frac{x^2}{9}+\frac{y^2}{8}$=1相交于C,D两点,且$\overrightarrow{AC}$与$\overrightarrow{BD}$同向.
(1)若丨AC丨=丨BD丨,求直线L的斜率.
(2)设C1在点A处的切线与x轴的交点为M,证明:直线l绕点F旋转时,△MFD总是钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在空间直角坐标系Oxyz中,已知点P(1,0,5),Q(1,2,4),则线段PQ的长度为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若实数x,y满足不等式组$\left\{\begin{array}{l}{x+y-2≥2}\\{x-y-2≤0}\\{y≥1}\end{array}\right.$,则目标函数z=x+2y的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知0为坐标原点,抛物线y2=8x,直线l经过抛物线的焦点F,且与抛物线交于A、B两点(点A在第一象限),满足$\overrightarrow{BA}=4\overrightarrow{BF}$,则△A0B的面积为(  )
A.$\frac{{4\sqrt{6}}}{3}$B.$\frac{{8\sqrt{3}}}{3}$C.$\frac{{16\sqrt{3}}}{3}$D.$\frac{{16\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.顶点在坐标原点,对称轴是坐标轴,并且经过$M(\sqrt{3},-2\sqrt{3})$的抛物线方程为y2=4$\sqrt{3}$x或x2=-$\frac{\sqrt{3}}{2}$y.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知抛物线C:x2=4y的焦点为F,准线与y轴的交点为Q,过点Q的直线l与抛物线C相交于不同的A,B两点.
(Ⅰ)若$|{AB}|=4\sqrt{15}$,求直线l的方程;
(Ⅱ)记FA、FB的斜率分别为k1、k2,试问:k1+k2的值是否随直线l位置的变化而变化?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={x|0<x<2015},B={x|x<a}.若A⊆B,则实数a的取值范围是(  )
A.{a|a≤0}B.{a|0<a≤2015}C.{a|a≥2015}D.{a|0<a<2015}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若f(x)在[a,b]上连续,则下列说法正确的是(  )
A.f(x)在[a,b]上可导
B.${∫}_{a}^{x}$f(t)dt为f(x)在[a,b]上的一个原函数:
C.${∫}_{x}^{b}$f(t)dt为f(x)在[a,b]上的一个原函数
D.f(x)在[a,b]上至少有一个零点

查看答案和解析>>

同步练习册答案