| A. | $\frac{{4\sqrt{6}}}{3}$ | B. | $\frac{{8\sqrt{3}}}{3}$ | C. | $\frac{{16\sqrt{3}}}{3}$ | D. | $\frac{{16\sqrt{6}}}{3}$ |
分析 求出抛物线的焦点,设直线l为x=my+2,代入抛物线方程,运用韦达定理和向量的坐标表示,解得m,再由三角形的面积公式,计算即可得到.
解答 解:抛物线y2=8x的焦点为(2,0),
设直线l为x=my+2,代入抛物线方程可得y2-8my-16=0,
设A(x1,y1),B(x2,y2),
则y1+y2=8m,y1y2=-16,
由$\overrightarrow{BA}=4\overrightarrow{BF}$,可得y1=-3y2,
由代入法,可得m2=$\frac{1}{3}$,
又△AOB的面积为S=$\frac{1}{2}$|OF|•|y1-y2|=$\frac{1}{2}×$2×$\sqrt{64{m}^{2}+64}$=$\frac{16\sqrt{3}}{3}$.
故选C
点评 本题考查直线和抛物线的位置关系,主要考查韦达定理和向量的共线的坐标表示,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 若方程x2+x-m=0有实根,则m>0 | B. | 若方程x2+x-m=0没有实根,则m>0 | ||
| C. | 若方程x2+x-m=0有实根,则m≤0 | D. | 若方程x2+x-m=0没有实根,则m≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{7}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{34}}}{6}$ | D. | $\frac{{\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com