分析 (1)先确定原方程无负实数根,令g(x)=$\frac{lnx}{x}$,求出函数的值域,方程f(x)=1有2个实数根,等价于1-t<$\frac{1}{e}$,求出t的范围即可;
(2)利用函数f(x)是(0,+∞)内的减函数,确定t<1,再分类讨论,即可求实数t的取值范围.
解答 解:(1)由f(x)=1,可得x=ex(1-t),
故有$\frac{lnx}{x}$=1-t.
令g(x)=$\frac{lnx}{x}$,则g′(x)=$\frac{1-lnx}{{x}^{2}}$,
∴0<x<e,g′(x)>0;x>e,f′(x)<0,
∴函数g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,
∴函数g(x)的最大值为g(e)=$\frac{1}{e}$,
∴函数g(x)的值域为(-∞,$\frac{1}{e}$];
若方程f(x)=1有2个实数根,等价于1-t<$\frac{1}{e}$,
∴t>1-$\frac{1}{e}$;
(2)f′(x)=etx[1+tx-e(1-t)x]
由题设,x>0,f′(x)≤0,(或f′(x)≥0)恒成立
不妨取x=1,则f′(1)=et(1+t-e1-t)≤0,
t≥1时,e1-t≤1,1+t≤2,不成立,∴t<1.
①t≤$\frac{1}{2}$,x>0时,f′(x)=etx[1+tx-e(1-t)x]≤${e}^{\frac{x}{2}}$(1+$\frac{x}{2}$-${e}^{\frac{x}{2}}$),
∵x-ex+1<0,∴1+$\frac{x}{2}$-${e}^{\frac{x}{2}}$<0,∴f′(x)<0,
∴函数f(x)是(0,+∞)内的减函数;
②$\frac{1}{2}$<t<1,$\frac{t}{1-t}$>1,∴$\frac{1}{1-t}$ln$\frac{t}{1-t}$>0,
令h(x)=1+tx-e(1-t)x,则h(0)=0,h′(x)=(1-t)[$\frac{t}{1-t}$-e(1-t)x]
0<x<$\frac{1}{1-t}$ln$\frac{t}{1-t}$,h′(x)>0,
∴h(x)在(0,$\frac{1}{1-t}$ln$\frac{t}{1-t}$)上单调递增,
∴h(x)>h(0)=0,此时,f′(x)>0,
∴f(x)在(0,$\frac{1}{1-t}$ln$\frac{t}{1-t}$)上单调递增,有f(x)>f(0)=0与题设矛盾,
综上,当且仅当t≤$\frac{1}{2}$时,函数f(x)是(0,+∞)内的减函数,
若f′(x)≥0在定义域恒成立,同理可得t≥1时成立,
综上,当且仅当t≤$\frac{1}{2}$时,函数f(x)是(0,+∞)内的减函数,t≥1时是增函数,
故t≤$\frac{1}{2}$或t≥1.
点评 本题考查导数知识的综合运用,考查函数的单调性与最值,考查学生分析解决问题的能力,难度大.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{4\sqrt{6}}}{3}$ | B. | $\frac{{8\sqrt{3}}}{3}$ | C. | $\frac{{16\sqrt{3}}}{3}$ | D. | $\frac{{16\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | cos(x-1)<sin$\frac{π}{2}$x | B. | sin2x<sinx2 | C. | sinx2<cos(x-1) | D. | sin2x>sin(2-x) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “p或q”为真,“非p”为假 | B. | “p且q”为假,“非q”为真 | ||
| C. | “p且q”为假,“非p”为假 | D. | “p且q”为真,“p或q”为真 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)在[a,b]上可导 | |
| B. | ${∫}_{a}^{x}$f(t)dt为f(x)在[a,b]上的一个原函数: | |
| C. | ${∫}_{x}^{b}$f(t)dt为f(x)在[a,b]上的一个原函数 | |
| D. | f(x)在[a,b]上至少有一个零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com